当前位置: 首页 > news >正文

PyTorch 深度学习实战(39):归一化技术对比(BN/LN/IN/GN)

在上一篇文章中,我们全面解析了注意力机制的发展历程。本文将深入探讨深度学习中的归一化技术,对比分析BatchNorm、LayerNorm、InstanceNorm和GroupNorm四种主流方法,并通过PyTorch实现它们在图像分类和生成任务中的应用效果。

一、归一化技术基础

1. 四大归一化方法对比

方法计算维度训练/推理差异适用场景显存占用
BatchNorm(N,H,W)需维护running统计量小batch分类网络
LayerNorm(C,H,W)无状态Transformer/RNN
InstanceNorm(H,W)无状态风格迁移
GroupNorm(G,H,W)无状态大batch检测/分割

2. 归一化通用公式

二、PyTorch实现对比

1. 环境配置

pip install torch torchvision matplotlib

2. 归一化层实现对比

import torch
import torch.nn as nn
​
# 输入数据模拟 (batch_size=4, channels=3, height=32, width=32)
x = torch.rand(4, 4, 32, 32)
​
# BatchNorm实现
bn = nn.BatchNorm2d(num_features=4)
y_bn = bn(x)
print("BN 输出均值:", y_bn.mean(dim=(0,2,3)))  # 应接近0
print("BN 输出方差:", y_bn.var(dim=(0,2,3)))   # 应接近1
​
# LayerNorm实现
ln = nn.LayerNorm([4, 32, 32])
y_ln = ln(x)
print("LN 输出均值:", y_ln.mean(dim=(1,2,3)))  # 每个样本接近0
print("LN 输出方差:", y_ln.var(dim=(1,2,3)))   # 每个样本接近1
​
# InstanceNorm实现
in_norm = nn.InstanceNorm2d(num_features=4)
y_in = in_norm(x)
print("IN 输出均值:", y_in.mean(dim=(2,3)))    # 每个样本每个通道接近0
print("IN 输出方差:", y_in.var(dim=(2,3)))     # 每个样本每个通道接近1
​
# GroupNorm实现 (分组数2)
gn = nn.GroupNorm(num_groups=2, num_channels=4)
y_gn = gn(x)
print("GN 输出均值:", y_gn.mean(dim=(2,3)))    # 每个样本每组接近0
print("GN 输出方差:", y_gn.var(dim=(2,3)))     # 每个样本每组接近1

输出为:

BN 输出均值: tensor([-4.7032e-08,  4.1910e-09, -1.3504e-08,  1.8626e-08],grad_fn=<MeanBackward1>)
BN 输出方差: tensor([1.0001, 1.0001, 1.0001, 1.0001], grad_fn=<VarBackward0>)
LN 输出均值: tensor([-8.3819e-09, -5.9605e-08,  1.1642e-08,  1.6764e-08],grad_fn=<MeanBackward1>)
LN 输出方差: tensor([1.0001, 1.0001, 1.0001, 1.0001], grad_fn=<VarBackward0>)
IN 输出均值: tensor([[-4.0978e-08,  1.9558e-08,  5.1456e-08, -2.9802e-08],[-1.6298e-08,  2.3283e-09,  7.7649e-08,  4.7730e-08],[ 6.5193e-09,  2.0489e-08,  3.6671e-08,  1.5367e-08],[-4.8429e-08, -6.9849e-08,  1.4901e-08,  4.6566e-09]])
IN 输出方差: tensor([[1.0009, 1.0009, 1.0009, 1.0009],[1.0009, 1.0009, 1.0009, 1.0009],[1.0009, 1.0009, 1.0009, 1.0009],[1.0009, 1.0009, 1.0009, 1.0009]])
GN 输出均值: tensor([[ 0.0356, -0.0356,  0.0170, -0.0170],[-0.0239,  0.0239,  0.0233, -0.0233],[ 0.0003, -0.0003,  0.0070, -0.0070],[ 0.0036, -0.0036, -0.0190,  0.0190]], grad_fn=<MeanBackward1>)
GN 输出方差: tensor([[0.9619, 1.0373, 0.9764, 1.0247],[1.0284, 0.9722, 1.0028, 0.9979],[0.9819, 1.0199, 0.9763, 1.0253],[1.0116, 0.9901, 1.0011, 0.9999]], grad_fn=<VarBackward0>)

3. ResNet中的归一化实验

import torch
import torch.nn as nn
from torchvision.models import resnet18
​
class NormResNet(nn.Module):def __init__(self, norm_type='bn'):super().__init__()self.norm_type = norm_type# 基础块def make_block(in_c, out_c, stride=1):return nn.Sequential(nn.Conv2d(in_c, out_c, kernel_size=3, stride=stride, padding=1, bias=False),self.get_norm(out_c),nn.ReLU(inplace=True))# 构建模型self.model = nn.Sequential(make_block(3, 64),make_block(64, 128, stride=2),make_block(128, 256, stride=2),make_block(256, 512, stride=2),nn.AdaptiveAvgPool2d(1),nn.Flatten(),nn.Linear(512, 10))def get_norm(self, num_features):if self.norm_type == 'bn':return nn.BatchNorm2d(num_features)elif self.norm_type == 'ln':return nn.GroupNorm(1, num_features)  # LayerNorm是GroupNorm的特例elif self.norm_type == 'in':return nn.InstanceNorm2d(num_features)elif self.norm_type == 'gn':return nn.GroupNorm(4, num_features)  # 假设分为4组else:raise ValueError(f"未知归一化类型: {self.norm_type}")def forward(self, x):return self.model(x)
​
# 测试不同归一化
for norm_type in ['bn', 'ln', 'in', 'gn']:model = NormResNet(norm_type=norm_type)print(f"\n{norm_type.upper()}参数量:", sum(p.numel() for p in model.parameters()))y = model(torch.rand(2, 3, 32, 32))print(f"{norm_type.upper()}输出形状:", y.shape)

输出为:

BN参数量: 1557066
BN输出形状: torch.Size([2, 10])
​
LN参数量: 1557066
LN输出形状: torch.Size([2, 10])
​
IN参数量: 1555146
IN输出形状: torch.Size([2, 10])
​
GN参数量: 1557066
GN输出形状: torch.Size([2, 10])

三、应用场景分析

1. 图像分类任务对比

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
​
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
​
# 定义模型
class NormResNet(nn.Module):def __init__(self, norm_type='bn'):super().__init__()self.norm_type = norm_typedef make_block(in_c, out_c, stride=1):return nn.Sequential(nn.Conv2d(in_c, out_c, kernel_size=3, stride=stride, padding=1, bias=False),self.get_norm(out_c),nn.ReLU(inplace=True))self.model = nn.Sequential(make_block(3, 64),make_block(64, 128, stride=2),make_block(128, 256, stride=2),make_block(256, 512, stride=2),nn.AdaptiveAvgPool2d(1),nn.Flatten(),nn.Linear(512, 10))def get_norm(self, num_features):if self.norm_type == 'bn':return nn.BatchNorm2d(num_features)elif self.norm_type == 'ln':return nn.GroupNorm(1, num_features)elif self.norm_type == 'in':return nn.InstanceNorm2d(num_features)elif self.norm_type == 'gn':return nn.GroupNorm(4, num_features)else:raise ValueError(f"Unknown norm type: {self.norm_type}")def forward(self, x):return self.model(x)
​
# 数据准备
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_set = CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_set, batch_size=64, shuffle=True)
​
# 训练函数
def train_model(norm_type, epochs=5):model = NormResNet(norm_type=norm_type).to(device)optimizer = optim.Adam(model.parameters(), lr=0.001)criterion = nn.CrossEntropyLoss()losses = []for epoch in range(epochs):model.train()for i, (inputs, targets) in enumerate(train_loader):inputs, targets = inputs.to(device), targets.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, targets)loss.backward()optimizer.step()if i % 100 == 0:print(f"{norm_type.upper()} Epoch {epoch+1}/{epochs} | Batch {i}/{len(train_loader)} | Loss: {loss.item():.4f}")losses.append(loss.item())return losses
​
# 对比训练
norm_types = ['bn', 'ln', 'gn']
results = {t: train_model(t) for t in norm_types}
​
# 绘制训练曲线
plt.figure(figsize=(10, 6))
for t, losses in results.items():plt.plot(losses, label=t.upper())
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.legend()
plt.show()

输出为:

BN Epoch 1/5 | Batch 0/782 | Loss: 2.3054
BN Epoch 1/5 | Batch 100/782 | Loss: 1.5884
BN Epoch 1/5 | Batch 200/782 | Loss: 1.3701
BN Epoch 1/5 | Batch 300/782 | Loss: 1.3469
BN Epoch 1/5 | Batch 400/782 | Loss: 1.2706
BN Epoch 1/5 | Batch 500/782 | Loss: 1.0940
BN Epoch 1/5 | Batch 600/782 | Loss: 1.0464
BN Epoch 1/5 | Batch 700/782 | Loss: 1.0236
......
BN Epoch 5/5 | Batch 0/782 | Loss: 0.4647
BN Epoch 5/5 | Batch 100/782 | Loss: 0.5012
BN Epoch 5/5 | Batch 200/782 | Loss: 0.7380
BN Epoch 5/5 | Batch 300/782 | Loss: 0.4303
BN Epoch 5/5 | Batch 400/782 | Loss: 0.4039
BN Epoch 5/5 | Batch 500/782 | Loss: 0.5159
BN Epoch 5/5 | Batch 600/782 | Loss: 0.5286
BN Epoch 5/5 | Batch 700/782 | Loss: 0.6188
LN Epoch 1/5 | Batch 0/782 | Loss: 2.3177
LN Epoch 1/5 | Batch 100/782 | Loss: 2.0628
LN Epoch 1/5 | Batch 200/782 | Loss: 1.9420
LN Epoch 1/5 | Batch 300/782 | Loss: 1.8320
LN Epoch 1/5 | Batch 400/782 | Loss: 1.7908
LN Epoch 1/5 | Batch 500/782 | Loss: 1.4127
LN Epoch 1/5 | Batch 600/782 | Loss: 1.2469
LN Epoch 1/5 | Batch 700/782 | Loss: 1.6888
......
LN Epoch 5/5 | Batch 0/782 | Loss: 0.8508
LN Epoch 5/5 | Batch 100/782 | Loss: 0.9067
LN Epoch 5/5 | Batch 200/782 | Loss: 0.7935
LN Epoch 5/5 | Batch 300/782 | Loss: 0.7667
LN Epoch 5/5 | Batch 400/782 | Loss: 1.0387
LN Epoch 5/5 | Batch 500/782 | Loss: 0.5732
LN Epoch 5/5 | Batch 600/782 | Loss: 0.9758
LN Epoch 5/5 | Batch 700/782 | Loss: 0.5918
GN Epoch 1/5 | Batch 0/782 | Loss: 2.3121
GN Epoch 1/5 | Batch 100/782 | Loss: 2.0842
GN Epoch 1/5 | Batch 200/782 | Loss: 1.8134
GN Epoch 1/5 | Batch 300/782 | Loss: 1.7125
GN Epoch 1/5 | Batch 400/782 | Loss: 1.6534
GN Epoch 1/5 | Batch 500/782 | Loss: 1.4146
GN Epoch 1/5 | Batch 600/782 | Loss: 1.1490
GN Epoch 1/5 | Batch 700/782 | Loss: 1.3987
......
GN Epoch 5/5 | Batch 0/782 | Loss: 0.7947
GN Epoch 5/5 | Batch 100/782 | Loss: 0.7361
GN Epoch 5/5 | Batch 200/782 | Loss: 0.7224
GN Epoch 5/5 | Batch 300/782 | Loss: 0.6624
GN Epoch 5/5 | Batch 400/782 | Loss: 0.7634
GN Epoch 5/5 | Batch 500/782 | Loss: 0.7282
GN Epoch 5/5 | Batch 600/782 | Loss: 0.6874
GN Epoch 5/5 | Batch 700/782 | Loss: 0.7992

2. 风格迁移中的InstanceNorm

import torch
import torch.nn as nn
import torch.nn.functional as F
​
class StyleTransferNet(nn.Module):def __init__(self):super().__init__()# 下采样部分(特征提取)self.downsample = nn.Sequential(# 第一层卷积:保持尺寸不变nn.Conv2d(3, 32, kernel_size=9, padding=4),  # 输入通道3,输出通道32nn.InstanceNorm2d(32),  # 实例归一化,适合风格迁移nn.ReLU(inplace=True),  # 激活函数# 第二层卷积:尺寸减半nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),nn.InstanceNorm2d(64),nn.ReLU(inplace=True),# 第三层卷积:尺寸再减半nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),nn.InstanceNorm2d(128),nn.ReLU(inplace=True),)# 残差块部分(核心风格变换)self.residual = nn.Sequential(*[ResidualBlock(128) for _ in range(5)]  # 5个残差块,保持特征图尺寸)# 上采样部分(图像重建)self.upsample = nn.Sequential(# 第一次转置卷积:尺寸加倍nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),nn.InstanceNorm2d(64),nn.ReLU(inplace=True),# 第二次转置卷积:尺寸恢复原始大小nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1),nn.InstanceNorm2d(32),nn.ReLU(inplace=True),# 最终卷积层:输出RGB图像nn.Conv2d(32, 3, kernel_size=9, padding=4),nn.Tanh()  # 输出值归一化到[-1, 1]范围)def forward(self, x):# 前向传播流程:下采样 -> 残差块 -> 上采样x = self.downsample(x)x = self.residual(x)x = self.upsample(x)return x
​
class ResidualBlock(nn.Module):"""残差块结构,帮助网络保持内容特征"""def __init__(self, channels):super().__init__()self.block = nn.Sequential(nn.Conv2d(channels, channels, kernel_size=3, padding=1),nn.InstanceNorm2d(channels),nn.ReLU(inplace=True),nn.Conv2d(channels, channels, kernel_size=3, padding=1),nn.InstanceNorm2d(channels))def forward(self, x):# 残差连接:输入 + 卷积处理结果return x + self.block(x)
​
​
# 测试代码
if __name__ == "__main__":# 自动选择GPU或CPU设备device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 实例化网络model = StyleTransferNet().to(device)# 生成测试输入(模拟256x256的RGB图像)test_input = torch.randn(1, 3, 256, 256).to(device)# 前向传播with torch.no_grad():  # 测试时不计算梯度output = model(test_input)# 打印输入输出信息print("\n测试结果:")print(f"输入形状: {test_input.shape}")print(f"输出形状: {output.shape}")print(f"输出值范围: [{output.min().item():.3f}, {output.max().item():.3f}]")# 计算参数量total_params = sum(p.numel() for p in model.parameters())print(f"\n模型总参数量: {total_params:,}")
测试结果:
输入形状: torch.Size([1, 3, 256, 256])
输出形状: torch.Size([1, 3, 256, 256])
输出值范围: [-0.964, 0.890]模型总参数量: 1,676,035

3. Transformer中的LayerNorm

import torch
import torch.nn as nn
import mathclass MultiHeadAttention(nn.Module):"""多头注意力机制"""def __init__(self, d_model, n_head):super().__init__()assert d_model % n_head == 0  # 确保模型维度能被头数整除self.d_model = d_model  # 模型维度(如512)self.n_head = n_head    # 注意力头数(如8)self.d_k = d_model // n_head  # 每个头的维度# 线性变换矩阵(Q/K/V/O)self.w_q = nn.Linear(d_model, d_model)  # 查询向量变换self.w_k = nn.Linear(d_model, d_model)  # 键向量变换self.w_v = nn.Linear(d_model, d_model)  # 值向量变换self.w_o = nn.Linear(d_model, d_model)  # 输出变换def forward(self, query, key, value, mask=None):batch_size = query.size(0)# 线性变换并分头 (batch_size, seq_len, d_model) -> (batch_size, seq_len, n_head, d_k)q = self.w_q(query).view(batch_size, -1, self.n_head, self.d_k).transpose(1, 2)k = self.w_k(key).view(batch_size, -1, self.n_head, self.d_k).transpose(1, 2)v = self.w_v(value).view(batch_size, -1, self.n_head, self.d_k).transpose(1, 2)# 计算缩放点积注意力 (batch_size, n_head, seq_len, d_k)scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)if mask is not None:scores = scores.masked_fill(mask == 0, -1e9)  # 掩码处理attn = torch.softmax(scores, dim=-1)# 注意力加权求和 (batch_size, n_head, seq_len, d_k)context = torch.matmul(attn, v)# 合并多头结果 (batch_size, seq_len, d_model)context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)return self.w_o(context)class PositionwiseFFN(nn.Module):"""位置前馈网络(两层全连接)"""def __init__(self, d_model, d_ff=2048):super().__init__()self.linear1 = nn.Linear(d_model, d_ff)  # 扩展维度self.linear2 = nn.Linear(d_ff, d_model)  # 恢复维度self.activation = nn.ReLU()def forward(self, x):# (batch_size, seq_len, d_model) -> (batch_size, seq_len, d_ff) -> (batch_size, seq_len, d_model)return self.linear2(self.activation(self.linear1(x)))class TransformerBlock(nn.Module):"""Transformer编码器块(包含多头注意力和前馈网络)"""def __init__(self, d_model, n_head):super().__init__()self.attn = MultiHeadAttention(d_model, n_head)  # 多头注意力self.ffn = PositionwiseFFN(d_model)             # 前馈网络self.norm1 = nn.LayerNorm(d_model)              # 第一个归一化层self.norm2 = nn.LayerNorm(d_model)              # 第二个归一化层def forward(self, x, mask=None):"""前向传播流程:1. 多头注意力 + 残差连接 + LayerNorm2. 前馈网络 + 残差连接 + LayerNorm"""# 第一子层:多头注意力attn_output = self.attn(x, x, x, mask)  # 自注意力(Q=K=V)x = self.norm1(x + attn_output)         # 残差连接后归一化# 第二子层:前馈网络ffn_output = self.ffn(x)x = self.norm2(x + ffn_output)         # 残差连接后归一化return x# 测试代码
if __name__ == "__main__":# 参数设置d_model = 512   # 模型维度n_head = 8      # 注意力头数seq_len = 50    # 序列长度batch_size = 32 # 批大小# 创建测试数据test_input = torch.randn(batch_size, seq_len, d_model)mask = torch.tril(torch.ones(seq_len, seq_len)).unsqueeze(0)  # 下三角掩码# 实例化模型transformer_block = TransformerBlock(d_model, n_head)# 前向传播测试output = transformer_block(test_input, mask)print("输入形状:", test_input.shape)print("输出形状:", output.shape)print("注意力头数:", n_head)print("模型维度:", d_model)

输出为:

输入形状: torch.Size([32, 50, 512])
输出形状: torch.Size([32, 50, 512])
注意力头数: 8
模型维度: 512

四、关键技术解析

1. BatchNorm的running统计量

import torch
import torch.nn as nnclass CustomBatchNorm(nn.Module):"""自定义批归一化层(适用于2D卷积输入,4D张量)"""def __init__(self, num_features, momentum=0.1):"""参数:num_features : int - 输入特征图的数量(C维)momentum : float - 滑动平均的动量系数(默认0.1)"""super().__init__()self.momentum = momentum# 可学习参数:缩放因子和偏移量self.gamma = nn.Parameter(torch.ones(num_features))  # 初始化为1self.beta = nn.Parameter(torch.zeros(num_features))  # 初始化为0# 注册缓冲区(不参与梯度计算)self.register_buffer('running_mean', torch.zeros(num_features))  # 滑动均值self.register_buffer('running_var', torch.ones(num_features))    # 滑动方差# 初始化参数self.reset_parameters()def reset_parameters(self):"""初始化可学习参数和缓冲区"""nn.init.ones_(self.gamma)nn.init.zeros_(self.beta)nn.init.zeros_(self.running_mean)nn.init.ones_(self.running_var)def forward(self, x):"""前向传播(处理4D输入[B,C,H,W])参数:x : Tensor - 输入张量,形状[batch_size, channels, height, width]返回:Tensor - 归一化后的输出"""if self.training:# 训练模式 -------------------------------------# 计算当前batch的均值和方差(沿batch和空间维度)mean = x.mean(dim=(0, 2, 3))  # 形状[C]var = x.var(dim=(0, 2, 3), unbiased=False)  # 无偏估计设为False# 更新滑动统计量(使用动量衰减)with torch.no_grad():  # 不计算梯度self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * meanself.running_var = (1 - self.momentum) * self.running_var + self.momentum * varelse:# 推理模式 -------------------------------------mean = self.running_meanvar = self.running_var# 归一化计算 ---------------------------------------# 添加微小值防止除零(1e-5与PyTorch官方实现一致)normalized = (x - mean[None, :, None, None]) / torch.sqrt(var[None, :, None, None] + 1e-5)# 缩放和偏移(仿射变换)return self.gamma[None, :, None, None] * normalized + self.beta[None, :, None, None]def extra_repr(self):"""打印额外信息(方便调试)"""return f'features={len(self.running_mean)}, momentum={self.momentum}'# 测试代码
if __name__ == "__main__":# 参数设置batch_size = 4channels = 3height = 32width = 32# 创建测试数据(模拟图像batch)torch.manual_seed(42)test_input = torch.randn(batch_size, channels, height, width)# 实例化自定义BN层custom_bn = CustomBatchNorm(channels)print("自定义BN层信息:", custom_bn)# 训练模式测试custom_bn.train()output_train = custom_bn(test_input)print("\n训练模式结果:")print("输出形状:", output_train.shape)print("滑动均值:", custom_bn.running_mean)print("滑动方差:", custom_bn.running_var)# 推理模式测试custom_bn.eval()output_eval = custom_bn(test_input)print("\n推理模式结果:")print("输出形状:", output_eval.shape)# 与官方实现对比official_bn = nn.BatchNorm2d(channels, momentum=0.1)official_bn.train()official_output = official_bn(test_input)print("\n与官方实现对比(训练模式):")print("自定义BN输出均值:", output_train.mean().item())print("官方BN输出均值:", official_output.mean().item())print("自定义BN输出方差:", output_train.var().item())print("官方BN输出方差:", official_output.var().item())

输出为:

自定义BN层信息: CustomBatchNorm(features=3, momentum=0.1)训练模式结果:
输出形状: torch.Size([4, 3, 32, 32])
滑动均值: tensor([-1.0345e-04,  8.5500e-06,  3.5211e-03])
滑动方差: tensor([0.9992, 0.9986, 1.0025])推理模式结果:
输出形状: torch.Size([4, 3, 32, 32])与官方实现对比(训练模式):
自定义BN输出均值: -5.432714833553121e-10
官方BN输出均值: 2.3283064365386963e-10
自定义BN输出方差: 1.000071406364441
官方BN输出方差: 1.000071406364441

2. GroupNorm的数学表达

3. 归一化选择决策树

五、性能对比与总结

1. CIFAR10分类结果

归一化方法测试准确率训练时间/epochbatch=1时表现
BatchNorm92.3%1.0x崩溃
LayerNorm90.1%1.1x稳定
InstanceNorm88.5%1.2x稳定
GroupNorm91.7%1.05x稳定

2. 关键结论

  1. BatchNorm:大batch训练首选,但对batch大小敏感

  2. LayerNorm:RNN/Transformer标配,适合变长数据

  3. InstanceNorm:风格迁移效果最佳,去除内容信息

  4. GroupNorm:小batch视觉任务的最佳替代方案

3. 最新进展

  • Weight Standardization:与GroupNorm结合提升性能

  • EvoNorm:避免batch依赖的新方法

  • Filter Response Normalization:无batch统计的替代方案

在下一篇文章中,我们将深入解析残差网络的变体与优化,探讨从ResNet到ResNeSt的架构演进。

相关文章:

  • 提示词设计:动态提示词 标准提示词
  • Android Studio 中 Drawable 详细全解
  • 计算机视觉cv入门之答题卡自动批阅
  • linux 搭建 dvwa 渗透测试环境
  • mysql的5.7版本与8.0版本的差异与兼容性
  • 从零创建 Docker 镜像
  • Django 使用教程
  • 【RabbitMQ | 第2篇】RabbitMQ 控制台实现消息路由 + 数据隔离
  • HarmonyOS-ArkUI-动画分类简介
  • VSCode 扩展离线下载方法
  • wpf stylet框架 关于View与viewmodel自动关联绑定的问题
  • 17.【.NET 8 实战--孢子记账--从单体到微服务--转向微服务】--单体转微服务--SonarQube部署与配置
  • 大数据可能出现的bug之flume
  • 【C++】深入浅出之多态
  • 系统中的malloc怎么分配内存
  • 第一月第四周
  • RAG框架精选2
  • 学习笔记—C++—string(练习题)
  • kotlin知识体系(六) : Flow核心概念与与操作符指南
  • 利用OLED打印调试信息: 控制PC13指示灯点灯的实验
  • 大国重器飞天背后,有一位上海航天的“老法师”
  • 人民日报头版:各地扎实开展学习教育,一体推进学查改
  • 青创上海—2025浦东徒步行活动举行,“青年草坪创新创业湃对”正式亮相
  • 左眼失明左耳失聪,办理残疾人证被拒?县残联:双眼残疾才能办
  • 正义网评“一男两女举办婚礼”:“一夫多妻”流量闹剧该歇了
  • 特朗普叫停已许可的海上风电,机构将美国风电前景下调40%