C语言中的双链表和单链表详细解释与实现
C语言中的双链表详细解释与实现
双链表(Doubly Linked List)是一种常见的数据结构,它比单链表更灵活,因为每个节点都包含指向前驱和后继节点的指针。
双链表的基本结构
节点定义
c
复制
下载
typedef struct Node {int data; // 数据域struct Node* prev; // 前驱指针struct Node* next; // 后继指针 } Node;
双链表结构
c
复制
下载
typedef struct {Node* head; // 头指针Node* tail; // 尾指针int size; // 链表长度 } DoublyLinkedList;
基本操作实现
1. 初始化双链表
c
复制
下载
void initList(DoublyLinkedList* list) {list->head = NULL;list->tail = NULL;list->size = 0; }
2. 创建新节点
c
复制
下载
Node* createNode(int data) {Node* newNode = (Node*)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");exit(1);}newNode->data = data;newNode->prev = NULL;newNode->next = NULL;return newNode; }
3. 在头部插入节点
c
复制
下载
void insertAtHead(DoublyLinkedList* list, int data) {Node* newNode = createNode(data);if (list->head == NULL) { // 空链表list->head = list->tail = newNode;} else {newNode->next = list->head;list->head->prev = newNode;list->head = newNode;}list->size++; }
4. 在尾部插入节点
c
复制
下载
void insertAtTail(DoublyLinkedList* list, int data) {Node* newNode = createNode(data);if (list->tail == NULL) { // 空链表list->head = list->tail = newNode;} else {newNode->prev = list->tail;list->tail->next = newNode;list->tail = newNode;}list->size++; }
5. 在指定位置插入节点
c
复制
下载
void insertAtPosition(DoublyLinkedList* list, int data, int position) {if (position < 0 || position > list->size) {printf("无效的位置!\n");return;}if (position == 0) {insertAtHead(list, data);} else if (position == list->size) {insertAtTail(list, data);} else {Node* newNode = createNode(data);Node* current = list->head;// 移动到要插入位置的前一个节点for (int i = 0; i < position - 1; i++) {current = current->next;}newNode->next = current->next;newNode->prev = current;current->next->prev = newNode;current->next = newNode;list->size++;} }
6. 删除头节点
c
复制
下载
void deleteHead(DoublyLinkedList* list) {if (list->head == NULL) {printf("链表为空,无法删除!\n");return;}Node* temp = list->head;list->head = list->head->next;if (list->head == NULL) { // 删除后链表为空list->tail = NULL;} else {list->head->prev = NULL;}free(temp);list->size--; }
7. 删除尾节点
c
复制
下载
void deleteTail(DoublyLinkedList* list) {if (list->tail == NULL) {printf("链表为空,无法删除!\n");return;}Node* temp = list->tail;list->tail = list->tail->prev;if (list->tail == NULL) { // 删除后链表为空list->head = NULL;} else {list->tail->next = NULL;}free(temp);list->size--; }
8. 删除指定位置的节点
c
复制
下载
void deleteAtPosition(DoublyLinkedList* list, int position) {if (position < 0 || position >= list->size) {printf("无效的位置!\n");return;}if (position == 0) {deleteHead(list);} else if (position == list->size - 1) {deleteTail(list);} else {Node* current = list->head;// 移动到要删除的节点for (int i = 0; i < position; i++) {current = current->next;}current->prev->next = current->next;current->next->prev = current->prev;free(current);list->size--;} }
9. 查找节点
c
复制
下载
Node* findNode(DoublyLinkedList* list, int data) {Node* current = list->head;while (current != NULL) {if (current->data == data) {return current;}current = current->next;}return NULL; // 未找到 }
10. 打印链表(从头到尾)
c
复制
下载
void printListForward(DoublyLinkedList* list) {Node* current = list->head;printf("链表(正向): ");while (current != NULL) {printf("%d ", current->data);current = current->next;}printf("\n"); }
11. 打印链表(从尾到头)
c
复制
下载
void printListBackward(DoublyLinkedList* list) {Node* current = list->tail;printf("链表(反向): ");while (current != NULL) {printf("%d ", current->data);current = current->prev;}printf("\n"); }
12. 释放链表内存
c
复制
下载
void freeList(DoublyLinkedList* list) {Node* current = list->head;while (current != NULL) {Node* temp = current;current = current->next;free(temp);}list->head = list->tail = NULL;list->size = 0; }
完整示例代码
c
复制
下载
#include <stdio.h> #include <stdlib.h>typedef struct Node {int data;struct Node* prev;struct Node* next; } Node;typedef struct {Node* head;Node* tail;int size; } DoublyLinkedList;// 前面定义的所有函数在这里实现int main() {DoublyLinkedList list;initList(&list);// 插入操作insertAtHead(&list, 10);insertAtHead(&list, 20);insertAtTail(&list, 30);insertAtPosition(&list, 15, 1);insertAtPosition(&list, 25, 3);// 打印链表printListForward(&list); // 输出: 链表(正向): 20 15 10 25 30 printListBackward(&list); // 输出: 链表(反向): 30 25 10 15 20 // 查找操作Node* found = findNode(&list, 10);if (found != NULL) {printf("找到节点: %d\n", found->data);} else {printf("未找到节点\n");}// 删除操作deleteHead(&list);deleteTail(&list);deleteAtPosition(&list, 1);printListForward(&list); // 输出: 链表(正向): 15 25 // 释放内存freeList(&list);return 0; }
双链表的应用场景
-
浏览器历史记录:前进和后退功能
-
文本编辑器:撤销和重做操作
-
音乐播放器:上一曲和下一曲功能
-
实现双端队列(Deque)
-
更复杂的数据结构基础:如平衡树等
双链表的优缺点
优点:
-
可以双向遍历
-
删除操作更高效(已知节点时O(1))
-
插入操作更灵活
缺点:
-
每个节点需要额外空间存储前驱指针
-
操作比单链表稍复杂
通过这个完整的C语言实现,你应该对双链表有了深入的理解。在实际编程中,可以根据需要扩展这些基本操作,例如添加排序、合并等功能。
单链表如下:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// 学生信息结构体
typedef struct Student {
int id;
char name[20];
int age;
float score;
struct Student *next;
} Student;
// 1. 创建链表
Student* createList() {
Student *head = (Student*)malloc(sizeof(Student));
if (head == NULL) {
printf("内存分配失败!\n");
exit(1);
}
head->next = NULL;
return head;
}
// 2. 插入节点(头插法)
void insertNode(Student *head) {
Student *newNode = (Student*)malloc(sizeof(Student));
if (newNode == NULL) {
printf("内存分配失败!\n");
return;
}
printf("请输入学号: ");
scanf("%d", &newNode->id);
printf("请输入姓名: ");
scanf("%s", newNode->name);
printf("请输入年龄: ");
scanf("%d", &newNode->age);
printf("请输入成绩: ");
scanf("%f", &newNode->score);
newNode->next = head->next;
head->next = newNode;
printf("添加成功!\n");
}
// 3. 删除节点(根据学号)
void deleteNode(Student *head, int id) {
Student *p = head->next;
Student *prev = head;
while (p != NULL) {
if (p->id == id) {
prev->next = p->next;
free(p);
printf("删除成功!\n");
return;
}
prev = p;
p = p->next;
}
printf("未找到学号为%d的学生!\n", id);
}
// 4. 查找学生信息
void searchStudent(Student *head, int id) {
Student *p = head->next;
while (p != NULL) {
if (p->id == id) {
printf("学号: %d, 姓名: %s, 年龄: %d, 成绩: %.2f\n",
p->id, p->name, p->age, p->score);
return;
}
p = p->next;
}
printf("未找到学号为%d的学生!\n", id);
}
// 5. 打印整个链表
void printList(Student *head) {
Student *p = head->next;
if (p == NULL) {
printf("链表为空!\n");
return;
}
printf("学生信息如下:\n");
printf("学号\t姓名\t年龄\t成绩\n");
while (p != NULL) {
printf("%d\t%s\t%d\t%.2f\n", p->id, p->name, p->age, p->score);
p = p->next;
}
}
// 6. 计算链表长度
int listLength(Student *head) {
int count = 0;
Student *p = head->next;
while (p != NULL) {
count++;
p = p->next;
}
return count;
}
// 7. 清空链表
void clearList(Student *head) {
Student *p = head->next;
Student *temp;
while (p != NULL) {
temp = p;
p = p->next;
free(temp);
}
head->next = NULL;
printf("链表已清空!\n");
}
// 主函数
int main() {
Student *head = createList();
int choice, id;
while (1) {
printf("\n学生信息管理系统\n");
printf("1. 添加学生\n");
printf("2. 删除学生\n");
printf("3. 查找学生\n");
printf("4. 显示所有学生\n");
printf("5. 统计学生人数\n");
printf("6. 清空链表\n");
printf("0. 退出\n");
printf("请选择操作: ");
scanf("%d", &choice);
switch (choice) {
case 1:
insertNode(head);
break;
case 2:
printf("请输入要删除的学生学号: ");
scanf("%d", &id);
deleteNode(head, id);
break;
case 3:
printf("请输入要查找的学生学号: ");
scanf("%d", &id);
searchStudent(head, id);
break;
case 4:
printList(head);
break;
case 5:
printf("当前共有%d名学生\n", listLength(head));
break;
case 6:
clearList(head);
break;
case 0:
clearList(head);
free(head);
printf("程序已退出!\n");
return 0;
default:
printf("无效的选择!\n");
}
}
return 0;
}
算法说明
- 链表结构:使用带头节点的单链表结构,头节点不存储数据,仅作为链表起始标志。
- 插入操作:采用头插法,新节点总是插入到头节点之后,时间复杂度O(1)。
- 删除操作:根据学号查找并删除节点,需要遍历链表,时间复杂度O(n)。
- 查找操作:根据学号线性查找,时间复杂度O(n)。
- 内存管理:每个节点动态分配内存,清空链表时需要逐个释放。
- 用户交互:通过简单的菜单系统实现功能选择。