当前位置: 首页 > news >正文

java实现网格交易回测

以下是一个基于Java实现的简单网格交易回测程序框架,以证券ETF(512880)为例。代码包含历史数据加载、网格策略逻辑和基础统计指标:

import java.io.BufferedReader;
import java.io.FileReader;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.*;// K线数据对象
class KData {Date date;double open;double high;double low;double close;long volume;public KData(String[] data) throws ParseException {SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");this.date = sdf.parse(data[0]);this.open = Double.parseDouble(data[1]);this.high = Double.parseDouble(data[2]);this.low = Double.parseDouble(data[3]);this.close = Double.parseDouble(data[4]);this.volume = Long.parseLong(data[5]);}
}// 网格策略回测引擎
class GridStrategyBacktest {List<KData> historicalData;double initialCapital = 100000;  // 初始资金10万元double cash = initialCapital;int position = 0;  // 持仓数量double gridStep = 0.05;  // 网格间距5%int gridLevels = 10;     // 网格层数double basePrice;        // 基准价(网格中心)List<String> trades = new ArrayList<>();  // 交易记录double totalReturn = 0;int winCount = 0;int tradeCount = 0;public GridStrategyBacktest(List<KData> data, double basePrice) {this.historicalData = data;this.basePrice = basePrice;}// 执行回测public void runBacktest() {for (KData bar : historicalData) {double price = bar.close;// 计算当前价格对应的网格层级int targetLevel = (int) ((price - basePrice) / (basePrice * gridStep));// 计算应该持有的仓位int targetPosition = Math.min(gridLevels, Math.max(-gridLevels, targetLevel)) * 100;// 执行交易int volumeToTrade = targetPosition - position;if (volumeToTrade != 0) {executeTrade(bar.date, price, volumeToTrade);}}// 计算最终收益totalReturn = (cash + position * historicalData.get(historicalData.size()-1).close - initialCapital) / initialCapital;}private void executeTrade(Date date, double price, int volume) {double cost = Math.abs(volume) * price * 1.0003;  // 包含0.03%的交易费用if (volume > 0) {  // 买入if (cost > cash) return;cash -= cost;position += volume;trades.add(String.format("%tF - 买入 %d股 @ %.4f", date, volume, price));} else {          // 卖出if (-volume > position) return;cash += (-volume) * price * 0.9997;  // 扣除卖出手续费position += volume;trades.add(String.format("%tF - 卖出 %d股 @ %.4f", date, -volume, price));}tradeCount++;if ((volume > 0 && price < basePrice) || (volume < 0 && price > basePrice)) {winCount++;}}// 输出统计结果public void printResults() {System.out.println("===== 回测结果 =====");System.out.printf("初始资金: %.2f\n", initialCapital);System.out.printf("最终资产: %.2f\n", cash + position * historicalData.get(historicalData.size()-1).close);System.out.printf("总收益率: %.2f%%\n", totalReturn * 100);System.out.printf("交易次数: %d\n胜率: %.2f%%\n", tradeCount, (double)winCount/tradeCount*100);System.out.println("\n最后5笔交易记录:");trades.subList(Math.max(0, trades.size()-5), trades.size()).forEach(System.out::println);}
}public class ETFBacktester {public static void main(String[] args) {// 1. 加载历史数据(示例数据格式:日期,开盘价,最高价,最低价,收盘价,成交量)List<KData> history = loadCSV("512880.csv");  // 需替换为实际数据文件路径// 2. 设置网格参数double basePrice = 1.0;  // 根据历史中位数设定网格基准价// 3. 运行回测GridStrategyBacktest backtester = new GridStrategyBacktest(history, basePrice);backtester.runBacktest();// 4. 输出结果backtester.printResults();}private static List<KData> loadCSV(String filename) {List<KData> data = new ArrayList<>();try (BufferedReader br = new BufferedReader(new FileReader(filename))) {String line;br.readLine();  // 跳过标题行while ((line = br.readLine()) != null) {String[] values = line.split(",");data.add(new KData(values));}} catch (Exception e) {e.printStackTrace();}return data;}
}

代码说明及使用步骤:

  1. 数据准备

    • 需要准备CSV格式的历史数据文件(示例文件名:512880.csv)
    • 数据格式(按日期排序):
      日期,开盘价,最高价,最低价,收盘价,成交量
      2023-01-03,1.052,1.068,1.050,1.065,12345678
      ...
      
  2. 核心逻辑

    • 网格生成:以基准价(basePrice)为中心,上下各生成gridLevels层网格
    • 交易触发:当价格突破网格层级时调整仓位
    • 费用计算:包含0.03%的买卖双边交易费用
  3. 关键参数

    double initialCapital = 100000;  // 初始资金
    double gridStep = 0.05;         // 5%网格间距
    int gridLevels = 10;            // 网格层数
    
  4. 输出指标

    • 总收益率
    • 交易次数
    • 胜率(盈利交易占比)
    • 详细交易记录

扩展建议(可根据需求添加):

  1. 增强统计指标

    // 在GridStrategyBacktest类中添加:
    double maxDrawdown = 0;     // 最大回撤
    double peak = initialCapital;// 在每次交易后更新:
    double currentValue = cash + position * price;
    if (currentValue > peak) {peak = currentValue;
    } else {double dd = (peak - currentValue)/peak;if (dd > maxDrawdown) maxDrawdown = dd;
    }
    
  2. 参数优化功能

    public void optimizeParameters() {for (double step = 0.03; step < 0.08; step += 0.01) {for (int levels = 5; levels <= 15; levels += 2) {GridStrategyBacktest test = new GridStrategyBacktest(history, basePrice);test.gridStep = step;test.gridLevels = levels;test.runBacktest();System.out.printf("步长:%.2f 层数:%d 收益:%.2f%%\n", step, levels, test.totalReturn*100);}}
    }
    
  3. 可视化输出

    // 使用JFreeChart库生成收益曲线图
    XYSeries series = new XYSeries("净值曲线");
    for (int i = 0; i < historicalData.size(); i++) {double value = cash + position * historicalData.get(i).close;series.add(i, value / initialCapital);
    }
    

注意事项:

  1. 需要复权价格数据(建议使用后复权)
  2. 实际交易需考虑最小交易单位(A股ETF为100股整数倍)
  3. 可增加止盈止损逻辑:
    // 在executeTrade方法中添加:
    if (totalReturn > 0.3) {  // 收益率超过30%时清仓int sellVolume = position;executeTrade(date, price, -sellVolume);
    }
    

如需完整实现,建议结合第三方库(如Ta4j用于技术指标计算)和数据库(存储历史数据)。

相关文章:

  • MySQL 库的操作 -- 增删改查,备份和恢复,系统编码
  • SIEMENS PLC程序解读 -BLKMOV (指定长度数据批量传输)
  • 深度学习之卷积神经网络入门
  • 火山云的市场竞争
  • HashSet 概述
  • 【实用技巧】如何无损去除图片水印?
  • HashMap的源码解析
  • ZYNQ-GPIO之MIO中断
  • 【kafka初学】启动执行命令
  • XMOS空间音频——在任何设备上都能提供3D沉浸式空间音频且实现更安全地聆听
  • 哈工大李治军《操作系统》进程同步与信号量笔记
  • HOJ.编程语言管理系统
  • 肯·汤普逊:UNIX之父与现代操作系统的开路人
  • Linux解压tar.gz包的正确姿势(附赠防抓狂指南)
  • 14-DevOps-快速部署Kubernetes
  • ‌Linux trap 命令详解
  • 颠覆传统!LSTM+transformer上大分!参数直降45.5%,精度远超SOTA!
  • 测试模版x
  • 【HFP】蓝牙HFP协议中音频连接转移与拨号功能的深度解析
  • 极域教师管理CMD命令操作
  • 借助AI应用,自闭症人群开始有可能真正“读懂他人”
  • 上海数学教育及数学科普专家陈永明去世,享年85岁
  • 李勇已任内蒙古乌兰察布市委副书记,曾在中央编办任职
  • 酒店就“保洁员调包住客港币”致歉,称希望尽早达成解决方案
  • 从世界工厂走向全球创新中心,上海车展为何成为全球汽车行业风向标?
  • 对话|男篮国手杨瀚森:参加NBA选秀,去更大的舞台追梦