当前位置: 首页 > news >正文

孤独症项目(3)

今天一刷朋友圈,一个小学同学订婚了。老实讲确实是羡慕了,到我这个年龄,游戏的吸引力已经下降了很多了,我需要性和爱。可是我身高,帅气,money什么都没有,所以我怎么办呢。我把那个同学屏蔽了,哈哈,事情就是这样,我抢不过别的男生,因为我个太矮,家太穷,自己又没有能力,所以我只能视而不见,活在自己的小世界里就好啦。开始今天的学习吧。
1
这个npy文件我知道咋回事了

{'timeseires': array([[[ -4.671351, -12.931799, -20.238678, ...,  -4.6999  ,
          -2.881232,  -5.373659],
        [ -6.610331, -10.146871, -11.706947, ...,  -8.545325,
          -4.824956,  -3.549801],
        [  6.539966,  -3.924838, -22.075667, ..., -10.810907,
          -9.507657, -11.782674],
        ...,
        [ 23.815056,  14.159346,  -4.235137, ...,   2.318333,
          -0.419391,  -6.08656 ],
        [ 29.358294,  29.569822,  12.97839 , ..., -35.478521,
         -32.452544, -38.755226],
        [ 12.700474,  10.523634,  -1.103658, ...,  16.980012,
          18.994251,   7.554179]],

       [[ 15.055096,  14.30167 ,   8.35954 , ...,  -2.320052,
           5.738047,  18.929523],
        [ -2.650435,  -5.070064,  -6.582098, ...,  -6.500024,
          -6.520322,  -2.209336],
        [  7.958244,   7.113133,   3.146248, ...,  -7.816352,
           0.160806,  12.985252],
        ...,
        [  0.216612,  -7.946295, -14.338741, ...,  -2.661149,
          -1.293657,   4.052661],
        [  0.595963,  -1.462514,  -3.352045, ...,  -7.601621,
          -1.38041 ,   7.066522],
        [ -1.754612,  -2.342497,  -2.100473, ...,  -4.888682,
           0.817308,   6.089231]],

       [[ 10.699614,  12.640328,   9.107096, ...,  25.303575,
          14.631509,  -2.431361],
        [  8.946028,  11.992252,  10.768465, ...,  17.12695 ,
           4.901006,  -9.559137],
        [ 12.502747,  17.729441,  17.117685, ...,  13.455708,
         -13.292004, -35.746319],
        ...,
        [-13.968082, -18.558227, -20.739389, ...,  30.461445,
          48.840466,  47.846905],
        [  7.775516,   7.945796,   4.77154 , ...,  35.356228,
          42.096015,  35.434606],
        [  3.752828,   5.027397,   4.62332 , ...,  22.339197,
          34.736423,  33.95411 ]],

       ...,

       [[ -9.594532, -18.276965, -12.977462, ...,  22.482481,
           9.076281,  -3.665357],
        [ -1.753394,  -3.048763,  -0.66247 , ...,   3.479453,
           6.685637,   5.947072],
        [ -7.053816,  -4.420122,   6.336983, ...,  23.162804,
          14.313564,   2.746504],
        ...,
        [ 14.337799,  18.14827 ,  -0.895313, ...,  37.246694,
          58.276117,  34.074897],
        [-15.100426, -22.201254, -24.41196 , ...,  60.251682,
          66.325714,  32.992202],
        [-13.52109 , -18.166892, -16.496382, ...,  38.908534,
          41.846779,  15.183713]],

       [[ -4.960212, -10.467057,  -2.350238, ...,   8.175621,
          -3.594708, -13.050947],
        [ -2.188337,  -5.102677,  -1.05976 , ...,   3.500581,
           5.308049,  -0.665579],
        [ -7.689325,  -4.299846,   4.479113, ...,   7.190843,
          -6.158385, -10.379174],
        ...,
        [  4.838299,  -1.461336,   3.449214, ...,  22.214853,
          10.277305, -20.902231],
        [ -9.16024 ,  -6.62222 ,   5.643113, ...,   1.50843 ,
          -7.206676, -21.635724],
        [ -7.149388,  -5.05326 ,   5.05269 , ...,  12.605102,
           7.582936, -10.857408]],

       [[ -8.999973,  -8.265457,   0.224464, ...,   2.243862,
          -2.492217, -13.048096],
        [ -1.115053,   0.311383,  -0.91307 , ...,   3.98221 ,
           1.695672,  -5.227182],
        [  2.39671 ,   2.200741,   5.486765, ...,  13.607921,
           7.737062, -13.571547],
        ...,
        [-24.200021, -15.751269,   3.40317 , ...,   3.005727,
           3.171528,  -1.583004],
        [-12.074557,  -7.229352,  -1.982399, ...,   4.310723,
          -9.359018,  -3.962187],
        [ -7.750716,  -6.153427,  -2.874191, ...,   4.213236,
          -2.779235,  -1.473658]]], shape=(1009, 111, 100)), 'label': array([0., 0., 0., ..., 0., 0., 0.], shape=(1009,)), 'corr': array([[[ 0.        ,  0.97663709,  0.82530072, ...,  0.13740499,
          0.35407144,  0.08548723],
        [ 0.97663709,  0.        ,  0.81736156, ...,  0.12545135,
          0.31653123,  0.08523937],
        [ 0.82530072,  0.81736156,  0.        , ...,  0.32199278,
          0.48073326,  0.23490678],
        ...,
        [ 0.13740499,  0.12545135,  0.32199278, ...,  0.        ,
          0.91433765,  0.76759212],
        [ 0.35407144,  0.31653123,  0.48073326, ...,  0.91433765,
          0.        ,  1.1123392 ],
        [ 0.08548723,  0.08523937,  0.23490678, ...,  0.76759212,
          1.1123392 ,  0.        ]],

       [[ 0.        ,  0.62647921,  0.68386934, ..., -0.05088815,
          0.60446506,  0.41812769],
        [ 0.62647921,  0.        ,  0.54538175, ...,  0.09402108,
          0.39961469,  0.28481799],
        [ 0.68386934,  0.54538175,  0.        , ..., -0.06276508,
          0.30605398,  0.22979597],
        ...,
        [-0.05088815,  0.09402108, -0.06276508, ...,  0.        ,
         -0.01265819,  0.08046417],
        [ 0.60446506,  0.39961469,  0.30605398, ..., -0.01265819,
          0.        ,  0.85968089],
        [ 0.41812769,  0.28481799,  0.22979597, ...,  0.08046417,
          0.85968089,  0.        ]],

       [[ 0.        ,  0.52387629,  0.39586813, ...,  0.49770721,
          0.77686881,  0.67761376],
        [ 0.52387629,  0.        ,  0.43492339, ...,  0.08623291,
          0.30371602,  0.28660143],
        [ 0.39586813,  0.43492339,  0.        , ..., -0.10309543,
         -0.00903498, -0.06115111],
        ...,
        [ 0.49770721,  0.08623291, -0.10309543, ...,  0.        ,
          0.69001642,  0.72559831],
        [ 0.77686881,  0.30371602, -0.00903498, ...,  0.69001642,
          0.        ,  1.37230362],
        [ 0.67761376,  0.28660143, -0.06115111, ...,  0.72559831,
          1.37230362,  0.        ]],

       ...,

       [[ 0.        ,  0.28196335,  0.62367273, ...,  0.31654042,
          0.30184585,  0.24758647],
        [ 0.28196335,  0.        ,  0.52368336, ..., -0.05335835,
         -0.01349599, -0.08051841],
        [ 0.62367273,  0.52368336,  0.        , ...,  0.07688247,
          0.15630406,  0.09915298],
        ...,
        [ 0.31654042, -0.05335835,  0.07688247, ...,  0.        ,
          0.33613925,  0.35266004],
        [ 0.30184585, -0.01349599,  0.15630406, ...,  0.33613925,
          0.        ,  1.26734374],
        [ 0.24758647, -0.08051841,  0.09915298, ...,  0.35266004,
          1.26734374,  0.        ]],

       [[ 0.        ,  0.3318541 ,  0.3479959 , ...,  0.17348234,
          0.33035729,  0.28096653],
        [ 0.3318541 ,  0.        ,  0.13110274, ...,  0.16131239,
          0.18152441,  0.0901034 ],
        [ 0.3479959 ,  0.13110274,  0.        , ...,  0.03690945,
          0.19735146,  0.23887414],
        ...,
        [ 0.17348234,  0.16131239,  0.03690945, ...,  0.        ,
          0.21702285,  0.29280098],
        [ 0.33035729,  0.18152441,  0.19735146, ...,  0.21702285,
          0.        ,  0.63961068],
        [ 0.28096653,  0.0901034 ,  0.23887414, ...,  0.29280098,
          0.63961068,  0.        ]],

       [[ 0.        ,  0.61490946,  0.86683146, ...,  0.28751356,
          0.35820952,  0.36030001],
        [ 0.61490946,  0.        ,  0.44664105, ...,  0.39767059,
          0.28708429,  0.39182893],
        [ 0.86683146,  0.44664105,  0.        , ...,  0.18048986,
          0.38597263,  0.43650839],
        ...,
        [ 0.28751356,  0.39767059,  0.18048986, ...,  0.        ,
          0.22311195,  0.35032753],
        [ 0.35820952,  0.28708429,  0.38597263, ...,  0.22311195,
          0.        ,  1.03944121],
        [ 0.36030001,  0.39182893,  0.43650839, ...,  0.35032753,
          1.03944121,  0.        ]]], shape=(1009, 111, 111)), 'pcorr': array([[[ 0.        ,  0.0845738 ,  0.05283968, ..., -0.02852326,
         -0.05030299, -0.00900934],
        [ 0.0845738 ,  0.        ,  0.05794923, ..., -0.06134557,
          0.02918709, -0.04988144],
        [ 0.05283968,  0.05794923,  0.        , ...,  0.08585561,
          0.0933945 , -0.01767182],
        ...,
        [-0.02852326, -0.06134557,  0.08585561, ...,  0.        ,
          0.0742375 ,  0.11123407],
        [-0.05030299,  0.02918709,  0.0933945 , ...,  0.0742375 ,
          0.        ,  0.26601118],
        [-0.00900934, -0.04988144, -0.01767182, ...,  0.11123407,
          0.26601118,  0.        ]],

       [[ 0.        ,  0.02515851, -0.02687615, ..., -0.07865261,
          0.03765896,  0.03533854],
        [ 0.02515851,  0.        ,  0.03731194, ..., -0.04081472,
         -0.02018316,  0.02902786],
        [-0.02687615,  0.03731194,  0.        , ...,  0.02341885,
         -0.0237432 ,  0.07630574],
        ...,
        [-0.07865261, -0.04081472,  0.02341885, ...,  0.        ,
          0.05092006,  0.03885538],
        [ 0.03765896, -0.02018316, -0.0237432 , ...,  0.05092006,
          0.        ,  0.08766317],
        [ 0.03533854,  0.02902786,  0.07630574, ...,  0.03885538,
          0.08766317,  0.        ]],

       [[ 0.        ,  0.0345411 ,  0.02792029, ..., -0.01667542,
          0.01530761, -0.00780056],
        [ 0.0345411 ,  0.        ,  0.05455556, ...,  0.0643729 ,
          0.01796368,  0.03800115],
        [ 0.02792029,  0.05455556,  0.        , ..., -0.01042823,
         -0.03121966,  0.01426741],
        ...,
        [-0.01667542,  0.0643729 , -0.01042823, ...,  0.        ,
         -0.07791113, -0.04875181],
        [ 0.01530761,  0.01796368, -0.03121966, ..., -0.07791113,
          0.        ,  0.13051308],
        [-0.00780056,  0.03800115,  0.01426741, ..., -0.04875181,
          0.13051308,  0.        ]],

       ...,

       [[ 0.        ,  0.0855516 ,  0.13597267, ...,  0.16457852,
          0.04648458,  0.03031205],
        [ 0.0855516 ,  0.        , -0.02231855, ..., -0.01696728,
          0.06332429, -0.05170068],
        [ 0.13597267, -0.02231855,  0.        , ..., -0.14505349,
         -0.05634801,  0.06301302],
        ...,
        [ 0.16457852, -0.01696728, -0.14505349, ...,  0.        ,
         -0.09211864,  0.03218952],
        [ 0.04648458,  0.06332429, -0.05634801, ..., -0.09211864,
          0.        ,  0.56874401],
        [ 0.03031205, -0.05170068,  0.06301302, ...,  0.03218952,
          0.56874401,  0.        ]],

       [[ 0.        ,  0.00369714,  0.01803972, ...,  0.02636135,
          0.01498399,  0.00107738],
        [ 0.00369714,  0.        , -0.04215888, ...,  0.08585435,
          0.01525622, -0.0044203 ],
        [ 0.01803972, -0.04215888,  0.        , ...,  0.00435903,
         -0.04385825,  0.01943377],
        ...,
        [ 0.02636135,  0.08585435,  0.00435903, ...,  0.        ,
          0.08473985,  0.14461459],
        [ 0.01498399,  0.01525622, -0.04385825, ...,  0.08473985,
          0.        ,  0.1207058 ],
        [ 0.00107738, -0.0044203 ,  0.01943377, ...,  0.14461459,
          0.1207058 ,  0.        ]],

       [[ 0.        ,  0.02612483,  0.03413983, ...,  0.06152281,
         -0.02745578, -0.01738546],
        [ 0.02612483,  0.        , -0.04195744, ...,  0.01392757,
         -0.07636841,  0.00512999],
        [ 0.03413983, -0.04195744,  0.        , ..., -0.00615086,
          0.00395361,  0.02567149],
        ...,
        [ 0.06152281,  0.01392757, -0.00615086, ...,  0.        ,
          0.01919661,  0.07781511],
        [-0.02745578, -0.07636841,  0.00395361, ...,  0.01919661,
          0.        ,  0.16214421],
        [-0.01738546,  0.00512999,  0.02567149, ...,  0.07781511,
          0.16214421,  0.        ]]], shape=(1009, 111, 111)), 'site': array(['PITT', 'PITT', 'PITT', ..., 'SBL', 'MAX_MUN', 'MAX_MUN'],
      shape=(1009,), dtype='<U8')}

它其实是一个被处理过后的数据集,比如说ABIDE数据集。这个abide.npy最后一个属性是site,它是一个一维数组,有1009个元素。为什么是1009呢,这代表这些数据可以分成1009组,它的site有时候是相同的,这代表可能在一个地方收集了多组数据。你比如说这个PITT吧,它就可能代表匹兹堡。
这个label也是一个很简单的属性,给数据打标签嘛,这个数据集都是ABIDE数据集的内容,所以没有打标签,也可能是后续要划分实验组什么的打标签。
我总算知道这个coor是什么了,我之前看过一篇论文,里面提到了皮尔逊积差相关系数,是计算两组数据之间线性关系的。比如此处吧,coor的shape=(1009, 111, 111),意思就是说有1009个二维数组,依次分别是[0][0],[0][1],[0][2],…,[0][1008];然后是[1][0],[1][1],…,[1][1008],不断递进,最后是[1008][0],[1008][1],…,[1008][1008]
[ 0. , 0.97663709, 0.82530072, …, 0.13740499,
0.35407144, 0.08548723],你看这个吧,0代表第一组数据和第二组数据之间的皮尔逊积差相关系数是0。这个肯定是处理过后的数据,因为一组数据和自己的相关性为1,它这里是0,肯定是去除了自相关。再看 0.97663709,这代表第一组数据和第二组数据的相关性为0.97663709,相关性快接近1了,这说明相关性很强。还有这个0.82530072,它代表第一组数据和第三组数据之间的相关性也很高了。中间有一堆的省略号,这个很有意思,这是因为数据太多了,所以它显示的时候把中间这部分省略掉了。这个0.13740499代表这两组数据之间的相关性很弱了。
我说既然有了corr,也就是皮尔逊积差相关系数的矩阵,为什么还要有pcorr,原来pcorr是部分相关系数的矩阵。
我懂了,我之前在论文里面一直看别人是怎么处理数据的,你像这个

'timeseires': array([[[ -4.671351, -12.931799, -20.238678, ...,  -4.6999  ,
          -2.881232,  -5.373659],
        [ -6.610331, -10.146871, -11.706947, ...,  -8.545325,
          -4.824956,  -3.549801],
        [  6.539966,  -3.924838, -22.075667, ..., -10.810907,
          -9.507657, -11.782674],
        ...,
        [ 23.815056,  14.159346,  -4.235137, ...,   2.318333,
          -0.419391,  -6.08656 ],
        [ 29.358294,  29.569822,  12.97839 , ..., -35.478521,
         -32.452544, -38.755226],
        [ 12.700474,  10.523634,  -1.103658, ...,  16.980012,
          18.994251,   7.554179]],

       [[ 15.055096,  14.30167 ,   8.35954 , ...,  -2.320052,
           5.738047,  18.929523],
        [ -2.650435,  -5.070064,  -6.582098, ...,  -6.500024,
          -6.520322,  -2.209336],
        [  7.958244,   7.113133,   3.146248, ...,  -7.816352,
           0.160806,  12.985252],
        ...,
        [  0.216612,  -7.946295, -14.338741, ...,  -2.661149,
          -1.293657,   4.052661],
        [  0.595963,  -1.462514,  -3.352045, ...,  -7.601621,
          -1.38041 ,   7.066522],
        [ -1.754612,  -2.342497,  -2.100473, ...,  -4.888682,
           0.817308,   6.089231]],

       [[ 10.699614,  12.640328,   9.107096, ...,  25.303575,
          14.631509,  -2.431361],
        [  8.946028,  11.992252,  10.768465, ...,  17.12695 ,
           4.901006,  -9.559137],
        [ 12.502747,  17.729441,  17.117685, ...,  13.455708,
         -13.292004, -35.746319],
        ...,
        [-13.968082, -18.558227, -20.739389, ...,  30.461445,
          48.840466,  47.846905],
        [  7.775516,   7.945796,   4.77154 , ...,  35.356228,
          42.096015,  35.434606],
        [  3.752828,   5.027397,   4.62332 , ...,  22.339197,
          34.736423,  33.95411 ]],

       ...,

       [[ -9.594532, -18.276965, -12.977462, ...,  22.482481,
           9.076281,  -3.665357],
        [ -1.753394,  -3.048763,  -0.66247 , ...,   3.479453,
           6.685637,   5.947072],
        [ -7.053816,  -4.420122,   6.336983, ...,  23.162804,
          14.313564,   2.746504],
        ...,
        [ 14.337799,  18.14827 ,  -0.895313, ...,  37.246694,
          58.276117,  34.074897],
        [-15.100426, -22.201254, -24.41196 , ...,  60.251682,
          66.325714,  32.992202],
        [-13.52109 , -18.166892, -16.496382, ...,  38.908534,
          41.846779,  15.183713]],

       [[ -4.960212, -10.467057,  -2.350238, ...,   8.175621,
          -3.594708, -13.050947],
        [ -2.188337,  -5.102677,  -1.05976 , ...,   3.500581,
           5.308049,  -0.665579],
        [ -7.689325,  -4.299846,   4.479113, ...,   7.190843,
          -6.158385, -10.379174],
        ...,
        [  4.838299,  -1.461336,   3.449214, ...,  22.214853,
          10.277305, -20.902231],
        [ -9.16024 ,  -6.62222 ,   5.643113, ...,   1.50843 ,
          -7.206676, -21.635724],
        [ -7.149388,  -5.05326 ,   5.05269 , ...,  12.605102,
           7.582936, -10.857408]],

       [[ -8.999973,  -8.265457,   0.224464, ...,   2.243862,
          -2.492217, -13.048096],
        [ -1.115053,   0.311383,  -0.91307 , ...,   3.98221 ,
           1.695672,  -5.227182],
        [  2.39671 ,   2.200741,   5.486765, ...,  13.607921,
           7.737062, -13.571547],
        ...,
        [-24.200021, -15.751269,   3.40317 , ...,   3.005727,
           3.171528,  -1.583004],
        [-12.074557,  -7.229352,  -1.982399, ...,   4.310723,
          -9.359018,  -3.962187],
        [ -7.750716,  -6.153427,  -2.874191, ...,   4.213236,
          -2.779235,  -1.473658]]], shape=(1009, 111, 100)), 

它记录的是1009个时刻,然后大脑分为111个脑区,在固定的时刻,固定的脑区,还有不同的测量维度之类的,我感觉大脑真的是很难估量的。
2
现在我看懂这个代码是什么意思了

    final_fc = data["timeseires"]
    final_pearson = data["corr"]
    labels = data["label"]

npy文件分为五部分数据嘛,只用到了其中的三部分,然后分别赋值给final_fc,final_pearson,labels
3

   _, _, timeseries = final_fc.shape

    _, node_size, node_feature_size = final_pearson.shape

这里就是要把1009个时间点赋值给timeseries,node_size为111,代表111个脑区维度,100代表不同的维度啊之类的
4

相关文章:

  • 【开源】编译器,在线操作
  • 压力测试知识总结
  • DeepSeek动画视频全攻略:从架构到本地部署
  • Linux系统安全
  • 视觉分析之边缘检测算法
  • Python 将PPT幻灯片和形状转换为多种图片格式(JPG, PNG, BMP, SVG, TIFF)
  • 风险价值VaR、CVaR与ES
  • 基于Spark和Hive的酒店数据分析与推荐系统
  • 蓝桥杯好数
  • OceanBase 初探学习历程之——安装部署
  • 达梦数据库应用开发_JDBC接口介绍_yxy
  • 一周学会Flask3 Python Web开发-request请求钩子(Hook)
  • Day7 25/2/20 THU
  • Hadoop初体验
  • 黑客如何利用提示词工程操纵AI代理?
  • 接口测试-API测试中常用的协议(下)
  • Nginx 部署 Vue 指南
  • 热门的AI网页版网址大全
  • 毕业项目推荐:基于yolov8/yolo11的100种中药材检测识别系统(python+卷积神经网络)
  • 飞机沿设置路径飞行以及跟踪飞行物(十一)
  • 欢迎回家!日本和歌山县4只大熊猫将于6月底送返中国
  • 唐仁健违规收受礼品、礼金被点名!十起违反中央八项规定精神典型问题被通报
  • 沂水县委书记陈士贤,跨市履新泰安市委常委、组织部部长
  • 接棒路颖,国泰海通证券副总裁谢乐斌履新海富通基金董事长
  • 融入长三角一体化发展,苏南名城镇江的优势和机遇何在
  • 事故调查报告:东莞一大楼装修项目去年致1人死亡,系违规带电作业