当前位置: 首页 > news >正文

【深度学习】Transformer梳理

零、前言

对于transformer,网上的教程使用记号、术语不一 。
最关键的一点,网上各种图的简化程度不一 (画个图怎么能这么偷懒) ,所以我打算自己手画一次图。
看到的最和善(但是不是那么靠谱,我怀疑图有误)的transformer教程:一文了解Transformer全貌(图解Transformer)

注意: 全连接层在概念上输入必须是一维向量,但是实际实现的时候我们会采用批处理将多个样本的向量组拼成矩阵,用矩阵乘法加速运算。如果用单一样本的向量来标注全文可能更清晰,但是为了更贴近实用,约定全文的输入长这个样子而不是向量:

输入为X矩阵其实,输入也不是矩阵。。。输入是3维张量,三个维度分别是batch_size, number(当前用到的词数), dimension(特征维度)
其中,number没有画出来,你可以按number=1来想,当成矩阵方便一些

一、前置基础中的前置基础

  • RNN
  • 残差连接(无论什么书,通常会在CNN的ResNet这一节中讲)
  • 归一化
  • 注意力机制

二、前置基础

  • Encoder-Decoder模型
  • 自注意力
  • 多头注意力

简单介绍一下,

  1. Encoder-Decoder模型是为了解决RNN容易忘记前文的问题(即使是LSTM也可能存在这个问题)

  2. 自注意力
    自注意力图示
    (其中Q、K、V是什么属于“注意力机制”的内容,假设你已经了解了这一块内容并能看懂上面的图)
    可以发现,自注意力的作用是把X转换为固定形状的M,便于处理

  3. 多头注意力
    多头注意力本身并不限制使用的是什么注意力来连接起来,Transformer中用的是自注意力。
    多头注意力图示多头注意力将多个自注意力Concat,是因为这样“并列”的结构能优化最长最短路,而且这样能表达的注意力机制更丰富

三、Transformer

Transformer相比起Seq2Seq模型,区别在于,Seq2Seq中RNN承担了Encoder、Decoder的角色,事实上,Encoder、Decoder可以由多种途径实现,Transformer中RNN不复存在,用的是多头注意力。因此Transformer是一种纯注意力机制的模型。
接下来在一个具体场景中学习Transformer。

目标:做文本翻译
数据集:包含翻译前后的文本,分别为Source和Target

1. 输入原文本Source

Source是单词,所以不能直接扔进神经网络去,需要先编码成向量,既不要损失词本身的信息,也不要损失词所在语句的位置的信息,那就干脆都编码,然后加起来。
输入处理

2. Encoder

Part 1
首先先经过多头注意力机制,然后Add&norm

  • Add指的是残差连接,使梯度流动更平稳,防止梯度消失/爆炸
  • norm本身归一化的目的是为了防止协变量偏移,提高泛化能力,归一化分为两种(层归一化对batch_size归一化,批归一化对dimension进行归一化),这里用的是层归一化
  • 关键:多头注意力机制对于注意力的表达更丰富,且本身“注意力”的含义就是对哪个词(所编码的向量)更有偏向(注意力分数,即权重矩阵),也就是说中英文语序这种问题不存在,是靠注意力机制来不定顺序翻译的

Part 2矩阵M是原本是三维张量,漏掉的n并不是随意漏的,而是因为翻译不应当和n相关(后面还会具体解释的),所以这一部分是为了丢掉n这个维度。

Encoder

3. 输入目标文本Target

Target
和Source是一样的,但是Target需要有**“Mask”**,为了避免模型过早“偷窥”到Target后面的内容

4.Decoder

上图也展示了Decoder的第一个多头注意力,还有第二个,第二个与之前的Encoder相连
Connection回忆注意力机制,现在把Encoder想成环境条件Key和Value,Decoder中已经出现的Target(没有被Mask的部分)词,你可能会对其中感兴趣也就是Query,那么你就懂上图为什么这么连了。
接着是熟悉的Dense,和Encoder一样。

Classification用一个Softmax决定生成哪个词,这里再次体现了Dense类似于1×1卷积层的功能。

Decoder

5. 反向传播进行训练

Back propagation图中打勾的部分是有参数能学的部分,由于输出是Softmax所以用交叉熵损失函数,链式法则反向传播更新参数。
注意一点,反向传播是等到所有词都依次通过一遍transformer后,再反向传播,以确保模型学习到了整个序列的上下文信息。

由于是翻译任务(有别于gpt那种生成式),还可以发现一个特点:翻译只能提前终止,不能延后终止(如果一次只能生成一个词,那么生成序列长度小于等于原序列)。

相关文章:

  • 网络原理-------TCP协议
  • Android环境下Mesa初始化流程重学习之eglInitialize
  • excel 点击单元格的内容 跳转到其他sheet设置
  • 在Linux或Android系统中,SIGSTOP和SIGCONT学习
  • Typora图床配置优化(PicGo-Core(command line) 插件 + gitee)
  • 【面试干货】事务的并发问题(脏读、不可重复读、幻读)与解决策略
  • 帝国CMS验证码不显示怎么回事呢?
  • 【Linux signal】
  • 1.6 分组延时,丢失和吞吐量
  • 【oracle】Oracle RAC中的GNS到底是什么?
  • 简述MVC模式
  • Clickhouse 算术函数操作总结—— Clickhouse 基础篇(五)
  • 李廉洋:5.29黄金早盘2365-2345区间,今日行情走势分析及策略。
  • 部门来了个测试开发,听说是00后,上来一顿操作给我看蒙了...
  • 月薪5万是怎样谈的?
  • 数据结构:二叉树与树
  • 微软为团队推出了 Copilot
  • go-gin中session实现redis前缀和db库选择+单点登录
  • 嵌入式学习(Day:28 进程间通信2 -> 信号通信)
  • 视创云展「VR直播」是什么?有哪些功能和应用场景?
  • 宁波银行一季度净利74.17亿元增5.76%,不良率持平
  • 习近平:在庆祝中华全国总工会成立100周年暨全国劳动模范和先进工作者表彰大会上的讲话
  • 报告显示2024年全球军费开支增幅达冷战后最大
  • “中国游”带火“中国购”,“即买即退”让外国游客购物更丝滑
  • 上海浦东单价超10万楼盘228套房源开盘当天售罄,4月已有三个新盘“日光”
  • 合肥一季度GDP为3003.88亿元,同比增长6.6%