16bit转8bit的常见方法(图像归一化)
文章目录
- 16-bit转8-bit的常用方法
- 一、数据类型转换:image.astype(np.uint8) —— 若数值 x 超出 0-255 范围,则取模运算。如:x = 600 % 256 = 88
- 二、截断函数:np.clip().astype(np.uint8) —— 若数值 x 超出 0-255 范围,则>255=255,<0=0。如:x = 600 => 255
- 三、线性缩放
- (1)固定比例(×) —— 适用于像素值均匀分布的高动态范围图像,对高对比度图像不够灵活,损失信息。
- (2)动态比例(√) —— 适用于对比度较低的图像,能提升细节。
- 四、图像归一化:[0,1 或 [0,255]
- (1)手动归一化(√)
- (2)OpenCV归一化:cv2.normalize()
- (3)百分比缩放:np.percentile()(√)
- 五、Fiji - Auto - B&C:min + max
将16-bit图像转换为8-bit图像是图像处理中的常见操作,目的是将原图像的像素值压缩至0-255范围。这种转换有助于减少存储空间、适应常见显示设备,并压缩动态范围。虽然16-bit图像能提供更丰富的细节和灰度级别,但其占用的内存和存储空间较大。通过转换为8-bit图像,可以有效降低数据量,满足日常应用需求,同时保持足够的视觉效果。
- 数据位数(bit) —— 描述了可以用多少个二进制位来表示一个数值。
- 16位:范围[0,216-1],即
[0,65535]
- 8位: 范围[0,28-1],即
[0,255]
- 图像概念:
- 16-bit 图像:每个像素的值由 16位 二进制数表示,范围为 [0, 65535]。这种高位深的图像可以表示更多的灰度级别,适用于医学影像、遥感图像等需要高动态范围和精细色彩细节的应用。
- 8-bit 图像:每个像素的值由 8位 二进制数表示,范围为 [0, 255]。8位图像的动态范围较小,但在许多普通的显示设备和图像处理应用中已经足够。8位图像广泛用于一般的灰度图像、彩色图像等。
- 图像转换:由于 8-bit 图像 的像素范围(0-255)比 16-bit 图像 的像素范围(0-65535)要小得多,因此,16-bit 图像转换为 8-bit 图像时需要做 缩放 或 归一化 操作,将其像素值映射到适当的范围。
16-bit转8-bit的常用方法
"""
输入图像:
[a, b]
[c, d]
扩展后的图像:
[a, 0, b, 0]
[0, 0, 0, 0]
[c, 0, d, 0]
[0, 0, 0, 0]
卷积核(3x3):
[w, x, y]
[z, p, q]
[r, s, t]
"""
import numpy as np
import cv2
def normalize(x, pmin=2, pmax=99.8, axis=None, clip=True, eps=1e-20, dtype=np.float32):
"""Percentile-based image normalization."""
mi = np.percentile(x, pmin, axis=axis, keepdims=True)
ma = np.percentile(x, pmax, axis=axis, keepdims=True)
return normalize_mi_ma(x, mi, ma, clip=clip, eps=eps, dtype=dtype)
def normalize_mi_ma(x, mi, ma, clip=False, eps=1e-20, dtype=np.float32):
if dtype is not None:
x = x.astype(dtype, copy=False)
mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype, copy=False)
ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype, copy=False)
eps = dtype(eps)
try:
import numexpr
x = numexpr.evaluate("(x - mi) / ( ma - mi + eps )")
except ImportError:
x = (x - mi) / (ma - mi + eps)
if clip:
x = np.clip(x, 0, 1)
return x
###############################################################################################
import tifffile
image_16bit = tifffile.imread(r"561result-1-part-1.tif")
image_16bit = image_16bit[0:100, 0:100]
# image_16bit = np.array([[260, 50, 600], [400, 500, 300]], dtype=np.uint16)
###############################################################################################
"""(1)数据类型转换(强转)"""
image_8bit_astype = image_16bit.astype(np.uint8)
"""(2)截断函数"""
image_8bit_clip = np.clip(image_16bit, 0, 255).astype(np.uint8)
###############################################################################################
min_value = np.min(image_16bit) # 获取图像的最小值
max_value = np.max(image_16bit) # 获取图像的最大值
"""(3.1)线性缩放-(固定)比例"""
scale_factor = 255.0 / 65535.0 # (固定)缩放比例
image_8bit_scaled_G = (image_16bit * scale_factor).astype(np.uint8)
"""(3.2)线性缩放-(动态)比例"""
if max_value != min_value:
scale = 255.0 / (max_value - min_value) # (动态)缩放比例
else:
scale = 1 # 或者其他特殊处理
image_8bit_scaled_D = np.clip(image_16bit * scale + 0.5, 0, 255).astype(np.uint8)
###############################################################################################
"""(4.1)手动归一化"""
image_8bit_manual = ((image_16bit - min_value) / (max_value - min_value) * 255).astype(np.uint8)
"""(4.2)cv2.normalize归一化"""
image_8bit_cv2 = cv2.normalize(image_16bit, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
"""(4.3)percentile归一化函数"""
data_nor = normalize(image_16bit, pmin=2, pmax=99.8, clip=True, dtype=np.float32)
image_8bit_percentile = np.clip(data_nor * 255, 0, 255).astype(np.uint8)
print("image_16bit:", image_16bit) # [[260 50 600] [400 500 300]]
print("image_8bit_astype:", image_8bit_astype) # [[ 4 50 88] [144 244 44]]
print("image_8bit_clip:", image_8bit_clip) # [[255 50 255] [255 255 255]]
print("image_8bit_scaled_G:", image_8bit_scaled_G) # [[1 0 2] [1 1 1]]
print("image_8bit_scaled_D:", image_8bit_scaled_D) # [[121 23 255] [185 232 139]]
print("image_8bit_manual:", image_8bit_manual) # [[ 97 0 255] [162 208 115]]
print("image_8bit_cv2:", image_8bit_cv2) # [[ 97 0 255] [162 209 116]]
print("image_8bit_percentile:", image_8bit_percentile) # [[0.35795453 0. 1. ] [0.62310606 0.8125 0.43371212]]
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.subplot(2, 4, 1), plt.imshow(image_16bit, cmap="gray"), plt.title("image_16bit"), plt.axis("off")
plt.subplot(2, 4, 2), plt.imshow(image_8bit_astype, cmap="gray"), plt.title("image_8bit_astype"), plt.axis("off")
plt.subplot(2, 4, 3), plt.imshow(image_8bit_clip, cmap="gray"), plt.title("image_8bit_clip"), plt.axis("off")
plt.subplot(2, 4, 4), plt.imshow(image_8bit_scaled_G, cmap="gray"), plt.title("image_8bit_scaled_G"), plt.axis("off")
plt.subplot(2, 4, 5), plt.imshow(image_8bit_scaled_D, cmap="gray"), plt.title("image_8bit_scaled_D"), plt.axis("off")
plt.subplot(2, 4, 6), plt.imshow(image_8bit_manual, cmap="gray"), plt.title("image_8bit_manual"), plt.axis("off")
plt.subplot(2, 4, 7), plt.imshow(image_8bit_cv2, cmap="gray"), plt.title("image_8bit_cv2"), plt.axis("off")
plt.subplot(2, 4, 8), plt.imshow(image_8bit_percentile, cmap="gray"), plt.title("image_8bit_percentile"), plt.axis("off")
plt.show()
# import napari
# viewer = napari.Viewer() # 创建napari视图
# viewer.add_image(image_16bit, name="image_16bit")
# viewer.add_image(image_8bit_astype, name="image_8bit_astype")
# viewer.add_image(image_8bit_clip, name="image_8bit_clip")
# viewer.add_image(image_8bit_scaled_G, name="image_8bit_scaled_G")
# viewer.add_image(image_8bit_scaled_D, name="image_8bit_scaled_D")
# viewer.add_image(image_8bit_manual, name="image_8bit_manual")
# viewer.add_image(image_8bit_cv2, name="image_8bit_cv2")
# viewer.grid.enabled = not viewer.grid.enabled # 切换到网格模式
# napari.run() # 启动 napari 事件循环,使得窗口保持打开并可交互。
一、数据类型转换:image.astype(np.uint8) —— 若数值 x 超出 0-255 范围,则取模运算。如:x = 600 % 256 = 88
import numpy as np
image_16bit = np.array([[260, 50, 600], [400, 500, 300]], dtype=np.uint16)
image_8bit = image_16bit.astype(np.uint8)
print("image_8bit:", image_8bit) # [[ 4 50 88] [144 244 44]]
二、截断函数:np.clip().astype(np.uint8) —— 若数值 x 超出 0-255 范围,则>255=255,<0=0。如:x = 600 => 255
import numpy as np
image_16bit = np.array([[260, 50, 600], [400, 500, 300]], dtype=np.uint16)
image_8bit = np.clip(image_16bit, 0, 255).astype(np.uint8)
print("image_8bit:", image_8bit) # [[255 50 255] [255 255 255]]
三、线性缩放
(1)固定比例(×) —— 适用于像素值均匀分布的高动态范围图像,对高对比度图像不够灵活,损失信息。
import numpy as np
image_16bit = np.array([[260, 50, 600], [400, 500, 300]]).astype(np.uint16)
scale_factor = 255.0 / 65535.0 # (固定)缩放比例
image_8bit = (image_16bit * scale_factor * 255).astype(np.uint8)
print("image_8bit:", image_8bit) # [[ 1 49 83] [140 240 41]]
(2)动态比例(√) —— 适用于对比度较低的图像,能提升细节。
import numpy as np
image_16bit = np.array([[260, 50, 600], [400, 500, 300]]).astype(np.uint16)
scale_factor = 255.0 / (np.max(image_16bit) - np.min(image_16bit)) # (动态)缩放比例
image_8bit = np.clip(image_16bit * scale_factor + 0.5, 0, 255).astype(np.uint8)
print("image_8bit:", image_8bit) # [[121 23 255] [185 232 139]]
四、图像归一化:[0,1 或 [0,255]
(1)手动归一化(√)
import numpy as np
image_16bit = np.array([[260, 50, 600], [400, 500, 300]]).astype(np.uint16)
image_8bit = np.clip((image_16bit - np.min(image_16bit)) / (np.max(image_16bit) - np.min(image_16bit)) * 255, 0, 255).astype(np.uint8)
print("image_8bit:", image_8bit) # [[ 97 0 255] [162 209 116]]
(2)OpenCV归一化:cv2.normalize()
import numpy as np
import cv2
image_16bit = np.array([[260, 50, 600], [400, 500, 300]]).astype(np.uint16)
image_8bit = cv2.normalize(image_16bit, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
print("image_8bit:", image_8bit) # [[ 97 0 255] [162 209 116]]
(3)百分比缩放:np.percentile()(√)
百分比缩放(Percentile Stretching):通过选择图像的百分比值,通常选择图像中的前 99% 或 95% 像素值作为实际的范围,然后将这些值线性映射到0-255范围。这种方法可以避免因极端像素值(如噪声或过曝光区域)影响结果。
import numpy as np
def normalize(x, pmin=2, pmax=99.8, axis=None, clip=True, eps=1e-20, dtype=np.float32):
"""Percentile-based image normalization."""
mi = np.percentile(x, pmin, axis=axis, keepdims=True)
ma = np.percentile(x, pmax, axis=axis, keepdims=True)
return normalize_mi_ma(x, mi, ma, clip=clip, eps=eps, dtype=dtype)
def normalize_mi_ma(x, mi, ma, clip=False, eps=1e-20, dtype=np.float32):
if dtype is not None:
x = x.astype(dtype, copy=False)
mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype, copy=False)
ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype, copy=False)
eps = dtype(eps)
try:
import numexpr
x = numexpr.evaluate("(x - mi) / ( ma - mi + eps )")
except ImportError:
x = (x - mi) / (ma - mi + eps)
if clip:
x = np.clip(x, 0, 1)
return x
if __name__ == '__main__':
data = np.array([[260, 50, 600], [400, 500, 300]]).astype(np.uint16)
data_nor = normalize(data, pmin=2, pmax=99.8, clip=True, dtype=np.float32)
data_nor8bit = np.clip(data_nor * 255, 0, 255).astype(np.uint8)
print(data_nor) # [[0.35795453 0. 1. ] [0.62310606 0.8125 0.43371212]]
print(data_nor8bit) # [[ 91 0 255] [158 207 110]]
五、Fiji - Auto - B&C:min + max
(1)提取 TIFF 图像页的元数据标签:min + max
(2)Fiji - JAVA:ImageProcessor convertToByteProcessor()
(3)Fiji - Auto - B&C(对比度函数)
import numpy as np
import tifffile
def auto(data, num_bins=256, times=1):
"""
函数功能: Fiji - Brightness/Contrast
输入参数: data ———— 2D or 3D图像
num_bins ———— bin数量
times ———— auto次数
备注:若为3D图像,需要提取具有一定意义的帧图像为参考帧。
"""
print(f"Fiji - Brightness/Contrast - Auto(times={times}).")
if data.ndim == 3:
# 在3D图像中(背景为黑,前景为白),计算每一帧图像的像素值总和,并以sum最大为参考帧。
effective_frame = []
for index, frame in enumerate(data):
effective_frame.append(np.sum(frame))
# # (部分)全黑的帧图像会出现(部分)像素值>0,但远小于50。
# if frame.max() > 50:
# data = frame
# break
frame_max_value = max(effective_frame)
frame_max_index = effective_frame.index(frame_max_value)
data = data[frame_max_index]
print(f"frame_max_index={frame_max_index}")
limit = data.size / 10
auto_threshold = 0
min_value, max_value = 0, 0
for i in range(times):
if auto_threshold < 10:
auto_threshold = 5000
else:
auto_threshold /= 2
data_min, data_max = data.min(), data.max()
threshold = data.size / auto_threshold
hist, bins = np.histogram(data, bins=num_bins)
hist[hist > limit] = 0
bin_size = (data_max - data_min) / num_bins
x = np.where(hist > threshold)[0]
if len(x) <= 1:
return data_min, data_max
min_bin, max_bin = x[0], x[-1]
min_value = data_min + min_bin * bin_size
max_value = data_min + max_bin * bin_size
return min_value, max_value
def convert_short_to_byte(pixels16, min_val, max_val, do_scaling=True):
"""(复现函数)BIRDS-JAVA: ImageProcessor convertToByteProcessor() """
# 使用掩码0xffff来提取16位像素值的低16位(低16位的像素值保留,高于16位的部分置0)。0xffff是一个16位的二进制数,所有位均为1。
# pixels8 = (pixels16 & 0xffff).astype(np.int16) # 执行按位与操作。
# pixels8_min_before, pixels8_min_before = np.min(pixels8), np.max(pixels8)
if do_scaling:
"""
任务:image = image - value
已知:image为uint16数组, value为正数且大于image的最小值(min_image)
输出:最小值的结果(整数溢出)=(65535 + min_image) - value
"""
pixels_result = np.where(pixels16 >= min_val, pixels16 - min_val, 0).astype(np.uint16) # 对于每个像素值,若像素值大于等于min_val,则减去min_val,否则置为0。
scale = 256.0 / (max_val - min_val + 1) # 计算缩放比例
pixels8 = np.clip(pixels_result * scale + 0.5, 0, 255).astype(np.uint8) # 截断函数 + 数据类型转换
else:
pixels8 = np.clip(pixels16, 0, 255).astype(np.uint8) # 使用NumPy的矢量化操作,避免循环
return pixels8
def tiff_pages_tags_min_max(tiff_path):
""""提取 TIFF 图像页的元数据标签:min + max"""
import re
TIFF = tifffile.TiffFile(tiff_path) # 打开 TIFF 文件
tiff_pages_tags = TIFF.pages[0].tags # 获取第一页的元数据标签
min_value, max_value = 0, 0
# 检查是否存在 ImageDescription 标签
if 'ImageDescription' in tiff_pages_tags:
image_description_tag = tiff_pages_tags['ImageDescription']
image_description = image_description_tag.value
# 使用正则表达式匹配 min 和 max 属性的值,直接匹配 µ 字符
match = re.search(r'min\s*=\s*([0-9.]+)\s*max\s*=\s*([0-9.]+)', image_description)
if match:
min_value = round(float(match.group(1)))
max_value = round(float(match.group(2)))
if min_value == max_value: # 属性存在但未赋值: min=0.0 + max=0.0
stack_image = tifffile.imread(tiff_path)
min_value, max_value = auto(stack_image)
min_value = round(min_value)
max_value = round(max_value)
print(f"image: min_gray_value={min_value}, max_gray_value={max_value}")
else:
print(f"No match found in image_description: {image_description}")
stack_image = tifffile.imread(tiff_path)
min_value, max_value = auto(stack_image)
min_value = round(min_value)
max_value = round(max_value)
print(f"image: min_gray_value={min_value}, max_gray_value={max_value}")
return min_value, max_value
if __name__ == "__main__":
# (1)生成1000个介于0到65535之间的随机整数
image_16bit = np.random.randint(0, 65536, 1000).reshape(10, 10, 10).astype(np.uint16)
save_path = "image.tif"
tifffile.imwrite(save_path, image_16bit) # 保存图像为TIFF
# (2)提取 TIFF 图像页的元数据标签:min + max
tag_min_value, tag_max_value = tiff_pages_tags_min_max(save_path)
print(f"min ={tag_min_value}, max ={tag_max_value}")
# (3)16bit转8bit
load_image = tifffile.imread(save_path) # 加载图像数据
image_8bit = convert_short_to_byte(load_image, tag_min_value, tag_max_value, do_scaling=True)
print(f"16位图像 ={image_16bit.shape}, min ={np.min(image_16bit)}, max ={np.max(image_16bit)}")
print(f" 8位图像 ={image_8bit.shape}, min ={np.min(image_8bit)}, max ={np.max(image_8bit)}")
# (4)可视化
import napari
viewer = napari.Viewer() # 创建napari视图
viewer.add_image(image_16bit, name="image_16bit", colormap='gray') # 添加图像(指定红色)
viewer.add_image(image_8bit, name="image_8bit", colormap='gray') # 添加图像(指定红色)
viewer.dims.ndisplay = 3 # 切换到n维显示模式
viewer.grid.enabled = not viewer.grid.enabled # 切换网格模式
napari.run() # 显示napari图形界面
"""
No match found in image_description: {"shape": [10, 10, 10]}
min =650, max =64795
16位图像 =(10, 10, 10), min =8, max =65519
8位图像 =(10, 10, 10), min =0, max =255
"""