当前位置: 首页 > news >正文

传入的表格格式数据流(TDS)远程过程调用(RPC)协议流不正确。此 RPC 请求中提供了过多的参数。最多应为 2100。

### Error updating database.  Cause: com.microsoft.sqlserver.jdbc.SQLServerException: 传入的表格格式数据流(TDS)远程过程调用(RPC)协议流不正确。此 RPC 请求中提供了过多的参数。最多应为 2100。

这是因为集合数据量过大,需要对集合进行拆分操作,就是将大集合折分成几个小集合,再进行分批操作,如:[1,2,3,4,5,6,7] 按三个一组拆分成 [[1,2,3]、[4,5,6]、[7]]

// 批量增加受理样品@Overridepublic void addBatch(List<ApplySample> applySampleList) {// 如果样品过多,SQL语句的参数大于2100,会报错【此 RPC 请求中提供了过多的参数。最多应为 2100】// applySampleMapper.insertBatch(applySampleList);/*这是插入一条样品信息的SQL语句,用到参数29个,2100 / 29 = 72.4,所以单次最多插入72条样品信息,最好插入50条样品信息<!--批量增加受理样品--><insert id="insertBatch"><foreach collection="list" item="item">if not exists(select as_ID from ApplySampleInfoC where as_OuterApplyId = #{item.outerApplyId} and as_ApplyID = #{item.applyId} and as_SampleNo = #{item.sampleNo})insert into ApplySampleInfoC(as_OuterApplyID, as_ApplyID, as_SampleNo,as_SampleName, as_SampleType, as_YCDD, as_SCDW,as_SCDWDZ, as_BatchNo, as_TradeMark, as_Packing,as_Property, as_Specs, as_CheckCondition, as_Amount, as_Unit,as_Gerder, as_Age, as_SJRQ, as_Vocation,as_nationality, as_Ethnics, as_Marriage, as_Education,as_IdentityCard, as_Telephone, as_Address,as_IdentityAddress, as_TakeMedicineSolutions)values(#{item.outerApplyId}, #{item.applyId}, #{item.sampleNo},#{item.sampleName}, #{item.sampleType}, #{item.location}, #{item.scdwName},#{item.scdwAddress}, #{item.batchNo}, #{item.trademark}, #{item.packing},#{item.property}, #{item.specs}, #{item.condition}, #{item.amount}, #{item.unit},#{item.gender}, #{item.age}, #{item.peopleGroup}, #{item.vocation},#{item.nationality}, #{item.ethnics}, #{item.marriage}, #{item.education},#{item.identityNumber}, #{item.telephone}, #{item.residenceAddress},#{item.identityAddress}, #{item.previousMedicalHistory})</foreach></insert>*/// 批处理,拆分数据,满50条,执行批量插入if (applySampleList != null && applySampleList.size() > 50) {List<ApplySample> applySampleNewList = new ArrayList<>();// 遍历提取数据for (int i = 0; i < applySampleList.size(); i++) {applySampleNewList.add(applySampleList.get(i));// 满50条数据,提交一次if ((i + 1) % 50 == 0) {applySampleMapper.insertBatch(applySampleNewList);applySampleNewList.clear();}}// 最后一次提交if (!applySampleNewList.isEmpty()) {applySampleMapper.insertBatch(applySampleNewList);applySampleNewList.clear();}} else{ // 不够50条数据,不需要分批,直接插入// 列表有数据才进行插入,否则不执行任何操作。这样写代码才健壮if (applySampleList != null && !applySampleList.isEmpty()) {applySampleMapper.insertBatch(applySampleList);}}}

对上面代码进行优化:

// 批量增加受理样品@Overridepublic void addBatch(List<ApplySample> applySampleList) {// 如果样品过多,SQL语句的参数大于2100,会报错【此 RPC 请求中提供了过多的参数。最多应为 2100】// applySampleMapper.insertBatch(applySampleList);/*这是插入一条样品信息的SQL语句,用到参数29个,2100 / 29 = 72.4,所以单次最多插入72条样品信息,最好插入50条样品信息<!--批量增加受理样品--><insert id="insertBatch"><foreach collection="list" item="item">if not exists(select as_ID from ApplySampleInfoC where as_OuterApplyId = #{item.outerApplyId} and as_ApplyID = #{item.applyId} and as_SampleNo = #{item.sampleNo})insert into ApplySampleInfoC(as_OuterApplyID, as_ApplyID, as_SampleNo,as_SampleName, as_SampleType, as_YCDD, as_SCDW,as_SCDWDZ, as_BatchNo, as_TradeMark, as_Packing,as_Property, as_Specs, as_CheckCondition, as_Amount, as_Unit,as_Gerder, as_Age, as_SJRQ, as_Vocation,as_nationality, as_Ethnics, as_Marriage, as_Education,as_IdentityCard, as_Telephone, as_Address,as_IdentityAddress, as_TakeMedicineSolutions)values(#{item.outerApplyId}, #{item.applyId}, #{item.sampleNo},#{item.sampleName}, #{item.sampleType}, #{item.location}, #{item.scdwName},#{item.scdwAddress}, #{item.batchNo}, #{item.trademark}, #{item.packing},#{item.property}, #{item.specs}, #{item.condition}, #{item.amount}, #{item.unit},#{item.gender}, #{item.age}, #{item.peopleGroup}, #{item.vocation},#{item.nationality}, #{item.ethnics}, #{item.marriage}, #{item.education},#{item.identityNumber}, #{item.telephone}, #{item.residenceAddress},#{item.identityAddress}, #{item.previousMedicalHistory})</foreach></insert>*/// 集合不为空if (!applySampleList.isEmpty()) {// 批处理,拆分数据,满50条,执行批量插入List<List<ApplySample>> lists = splitList(applySampleList, 50);for (List<ApplySample> list: lists) {applySampleMapper.insertBatch(list);}}// 集合分割,将一个大集合分割成多个小集合,数据示例:[1,2,3,4,5,6,7] 按3个元素一组分割成 [[1,2,3],[4,5,6],[7]]public List<List<ApplySample>> splitList(List<ApplySample> list, int chunkSize) {List<List<ApplySample>> result = new ArrayList<>();for (int i = 0; i < list.size(); i += chunkSize) {int end = Math.min(i + chunkSize, list.size());result.add(list.subList(i, end));}return result;}}

对上面代码再一步优化:

1、提取集合拆分的逻辑,做成集合拆分通用工具

package com.weiyu.utils;import java.util.ArrayList;
import java.util.Collection;
import java.util.List;public class PublicUtils {/*** 集合分割,将一个大集合分割成多个小集合,数据示例:[1,2,3,4,5,6,7] 按3个元素一组分割成 [[1,2,3],[4,5,6],[7]]* @param list 集合* @param chunkSize 分割大小* @return 返回分割集合*/public static <E> Collection<List<E>> splitList(List<E> list, int chunkSize) {List<List<E>> result = new ArrayList<>();for (int i = 0; i < list.size(); i += chunkSize) {int end = Math.min(i + chunkSize, list.size());result.add(list.subList(i, end));}return result;}
}

2、使用集合拆分通用工具

// 批量增加受理样品@Overridepublic void addBatch(List<ApplySample> applySampleList) {// 如果样品过多,SQL语句的参数大于2100,会报错【此 RPC 请求中提供了过多的参数。最多应为 2100】// applySampleMapper.insertBatch(applySampleList);/*这是插入一条样品信息的SQL语句,用到参数29个,2100 / 29 = 72.4,所以单次最多插入72条样品信息,最好插入50条样品信息<!--批量增加受理样品--><insert id="insertBatch"><foreach collection="list" item="item">if not exists(select as_ID from ApplySampleInfoC where as_OuterApplyId = #{item.outerApplyId} and as_ApplyID = #{item.applyId} and as_SampleNo = #{item.sampleNo})insert into ApplySampleInfoC(as_OuterApplyID, as_ApplyID, as_SampleNo,as_SampleName, as_SampleType, as_YCDD, as_SCDW,as_SCDWDZ, as_BatchNo, as_TradeMark, as_Packing,as_Property, as_Specs, as_CheckCondition, as_Amount, as_Unit,as_Gerder, as_Age, as_SJRQ, as_Vocation,as_nationality, as_Ethnics, as_Marriage, as_Education,as_IdentityCard, as_Telephone, as_Address,as_IdentityAddress, as_TakeMedicineSolutions)values(#{item.outerApplyId}, #{item.applyId}, #{item.sampleNo},#{item.sampleName}, #{item.sampleType}, #{item.location}, #{item.scdwName},#{item.scdwAddress}, #{item.batchNo}, #{item.trademark}, #{item.packing},#{item.property}, #{item.specs}, #{item.condition}, #{item.amount}, #{item.unit},#{item.gender}, #{item.age}, #{item.peopleGroup}, #{item.vocation},#{item.nationality}, #{item.ethnics}, #{item.marriage}, #{item.education},#{item.identityNumber}, #{item.telephone}, #{item.residenceAddress},#{item.identityAddress}, #{item.previousMedicalHistory})</foreach></insert>*/// 集合不为空if (!applySampleList.isEmpty()) {// 批处理,拆分数据,满50条,执行批量插入List<List<ApplySample>> lists = (List<List<ApplySample>>)PublicUtils.splitList(applySampleList, 50);for (List<ApplySample> list: lists) {applySampleMapper.insertBatch(list);}}}

相关文章:

  • Day98 | 灵神 | 二叉树 平衡二叉树
  • 文件上传漏洞3
  • 开发网页程序时预览时遇到跨域问题解决方法
  • 【EasyPan】文件上传、文件秒传、文件转码、文件合并、异步转码分析
  • 4.LinkedList的模拟实现:
  • 懒人一键搭建符号执行环境V5K3
  • 【C++】——入门基础(一)
  • 详解Windows(七)——更新管理
  • dmncdm达梦新云缓存数据库主从集群安装部署详细步骤说明
  • 数据结构*链表- LinkedList
  • 多模态知识图谱:重构大模型RAG效能新边界
  • 【锂电池剩余寿命预测】LSTM长短期记忆神经网络锂电池剩余寿命预测(Matlab源码)
  • 【MQ篇】RabbitMQ初体验!
  • 网络设备智能巡检系统-MCP案例总结
  • 网易云音乐如何修改缓存地址到D盘
  • 【自然语言处理与大模型】如何知道自己部署的模型的最大并行访问数呢?
  • 再见 Smartdaili,你好 Decodo!
  • 2025年阿里云云计算ACP高级工程师认证模拟试题(附答案解析)
  • DeepSeek系列(5):助力数据分析
  • 黑马商城(六)RabbitMQ
  • 纪念沈渭滨︱“要把近代史搞得会通”——读《士与大变动时代》随札
  • 视频·世界读书日|林乾:碎片化阅读或影视综艺≠知识
  • “何以中国·闽山闽水物华新”网络主题宣传活动在福建武夷山启动
  • 俄“联盟MS-26”载人飞船安全返回地球
  • 澳门世界杯“中日对决”,蒯曼击败伊藤美诚晋级女单决赛
  • 白兰花香飘京城,上海文化体验项目点亮中华民族共同体之美