当前位置: 首页 > news >正文

高等数学第二章---导数与微分(2.1~2.3)

§2.1 引例

上一章研究函数连续性时给出了自变量改变量 Δ x \Delta x Δx 和因变量改变量 Δ y \Delta y Δy,在实际问题中经常需要研究因变量 y y y 随自变量 x x x 变化快慢的程度,即平均变化率 Δ y Δ x \frac{\Delta y}{\Delta x} ΔxΔy瞬时变化率 lim ⁡ Δ x → 0 Δ y Δ x \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x} Δx0limΔxΔy。下面从两个实际问题出发,抽象出共同的数学本质,即瞬时变化率 lim ⁡ Δ x → 0 Δ y Δ x \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x} Δx0limΔxΔy 这一数学模型。

例1 变速直线运动的速度问题

已知一物体作变速直线运动,路程是时间的函数 s = s ( t ) s = s(t) s=s(t)。求 t 0 t_{0} t0 时刻的瞬时速度。
在这里插入图片描述

:由于物体作变速运动,显然不能孤立地计算某一时刻的瞬时速度。先让时间 t t t t 0 t_{0} t0 处产生改变量 Δ t \Delta t Δt,然后计算该时间段上的平均速度
v ˉ = Δ s Δ t = s ( t 0 + Δ t ) − s ( t 0 ) Δ t \bar{v}=\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\Delta t} vˉ=ΔtΔs=Δts(t0+Δt)s(t0)
最后当 Δ t → 0 \Delta t \rightarrow 0 Δt0 时求极限得到 t 0 t_{0} t0 时刻的瞬时速度
v ( t 0 ) = lim ⁡ Δ t → 0 Δ s Δ t = lim ⁡ Δ t → 0 s ( t 0 + Δ t ) − s ( t 0 ) Δ t (1) v\left(t_{0}\right)=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\Delta t} \tag{1} v(t0)=Δt0limΔtΔs=Δt0limΔts(t0+Δt)s(t0)(1)

例2 曲线的切线斜率问题

设曲线 y = f ( x ) y = f(x) y=f(x),求曲线上 M 0 ( x 0 , y 0 ) M_{0}(x_{0},y_{0}) M0(x0,y0) 处的切线斜率。
在这里插入图片描述

:由于切线是割线的极限位置,因此不能孤立地计算一点处的切线斜率。让自变量 x x x x 0 x_{0} x0 处产生改变量 Δ x \Delta x Δx,即在曲线上 M 0 ( x 0 , y 0 ) M_0(x_0,y_0) M0(x0,y0) 附近再找一点 M ( x 0 + Δ x , y 0 + Δ y ) M(x_0 + \Delta x,y_0+\Delta y) M(x0+Δx,y0+Δy),然后作割线 M M 0 MM_0 MM0。割线 M M 0 MM_0 MM0 的斜率
k ˉ = Δ y Δ x = f ( x 0 + Δ x ) − f ( x 0 ) Δ x \bar{k}=\frac{\Delta y}{\Delta x}=\frac{f(x_0 + \Delta x)-f(x_0)}{\Delta x} kˉ=ΔxΔy=Δxf(x0+Δx)f(x0)
最后当点 M M M 沿曲线无限趋近于 M 0 M_0 M0 时,即当 Δ x → 0 \Delta x\rightarrow0 Δx0 时,割线 M M 0 MM_0 MM0 达到极限位置即为切线 M 0 T M_0T M0T,于是切线斜率为
k = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x (2) k = \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\tag{2} k=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)(2)

总结:上述两个问题的实际意义不同,但有共同的数学本质,即有相同的数学模型
lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
我们把这种瞬时变化率的模型称为导数

§2.2 导数的概念

一、导数的定义

1. f ( x ) f(x) f(x) x 0 x_{0} x0 处的导数

定义:设 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某邻域内有定义,当 x x x x 0 x_{0} x0 处有改变量 Δ x \Delta x Δx 时,相应有 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) Δy=f(x0+Δx)f(x0)。若
lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
存在,则称 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 处可导,极限值称为导数,记作
f ′ ( x 0 ) , y ′ ∣ x = x 0 , d y d x ∣ x = x 0 , d f d x ∣ x = x 0 f^{\prime}\left(x_{0}\right), y^{\prime}\mid_{x=x_{0}},\left.\quad\frac{d y}{d x}\right|_{x=x_{0}},\left.\quad\frac{d f}{d x}\right|_{x=x_{0}} f(x0),yx=x0,dxdy x=x0,dxdf x=x0

f ′ ( x 0 ) = y ′ ∣ x = x 0 = d y d x ∣ x = x 0 = d f d x ∣ x = x 0 = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=y^{\prime}\mid_{x=x_{0}}=\left.\frac{d y}{d x}\right|_{x=x_{0}}=\left.\frac{d f}{d x}\right|_{x=x_{0}}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f(x0)=yx=x0=dxdy x=x0=dxdf x=x0=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
否则,则称 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 处不可导。

y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 处导数的几种形式:

  1. f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} f(x0)=limΔx0ΔxΔy
  2. f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f(x0)=limΔx0Δxf(x0+Δx)f(x0)
  3. x 0 + Δ x = x x_{0}+\Delta x=x x0+Δx=x,则 f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} f(x0)=limxx0xx0f(x)f(x0)
  4. Δ x = h \Delta x=h Δx=h,则 f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} f(x0)=limh0hf(x0+h)f(x0)

例1 y = x 2 y=x^{2} y=x2 x = 2 x=2 x=2 处的导数


f ′ ( 2 ) = lim ⁡ x → 2 f ( x ) − f ( 2 ) x − 2 = lim ⁡ x → 2 x 2 − 4 x − 2 = lim ⁡ x → 2 ( x + 2 ) = 4 f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2}(x+2)=4 f(2)=x2limx2f(x)f(2)=x2limx2x24=x2lim(x+2)=4

例2 f ( x ) f(x) f(x) x 0 x_{0} x0 处可导,则下列各式中结果等于 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 的是(D)

(A) lim ⁡ Δ x → 0 f ( x 0 ) − f ( x 0 + Δ x ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}\right)-f\left(x_{0}+\Delta x\right)}{\Delta x} limΔx0Δxf(x0)f(x0+Δx)
(B) lim ⁡ Δ x → 0 f ( x 0 − Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}-\Delta x\right)-f\left(x_{0}\right)}{\Delta x} limΔx0Δxf(x0Δx)f(x0)
© lim ⁡ Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+2 \Delta x\right)-f\left(x_{0}\right)}{\Delta x} limΔx0Δxf(x0+x)f(x0)
(D) lim ⁡ Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 + Δ x ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+2 \Delta x\right)-f\left(x_{0}+\Delta x\right)}{\Delta x} limΔx0Δxf(x0+x)f(x0+Δx)

  • f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f(x0)=limΔx0Δxf(x0+Δx)f(x0)
  • (A) lim ⁡ Δ x → 0 f ( x 0 ) − f ( x 0 + Δ x ) Δ x = − lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = − f ′ ( x 0 ) \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}\right)-f\left(x_{0}+\Delta x\right)}{\Delta x}=-\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=-f^{\prime}\left(x_{0}\right) limΔx0Δxf(x0)f(x0+Δx)=limΔx0Δxf(x0+Δx)f(x0)=f(x0)
  • (B) lim ⁡ Δ x → 0 f ( x 0 − Δ x ) − f ( x 0 ) Δ x = − lim ⁡ Δ x → 0 f ( x 0 + ( − Δ x ) ) − f ( x 0 ) − Δ x = − lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h = − f ′ ( x 0 ) \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}-\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=-\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+(-\Delta x)\right)-f\left(x_{0}\right)}{-\Delta x}=-\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=-f^{\prime}\left(x_{0}\right) limΔx0Δxf(x0Δx)f(x0)=limΔx0Δxf(x0+(Δx))f(x0)=limh0hf(x0+h)f(x0)=f(x0)
  • © lim ⁡ Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 ) Δ x = 2 lim ⁡ Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 ) 2 Δ x = 2 f ′ ( x 0 ) \lim\limits_{\Delta x \to 0} \frac{f(x_0 + 2\Delta x) - f(x_0)}{\Delta x} = 2\lim\limits_{\Delta x \to 0} \frac{f(x_0 + 2\Delta x) - f(x_0)}{2\Delta x} = 2f'(x_0) Δx0limΔxf(x0+x)f(x0)=2Δx0limxf(x0+x)f(x0)=2f(x0)
  • (D) lim ⁡ Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 + Δ x ) Δ x = lim ⁡ Δ x → 0 ( f ( x 0 + 2 Δ x ) − f ( x 0 ) Δ x − f ( x 0 + Δ x ) − f ( x 0 ) Δ x ) = 2 f ′ ( x 0 ) − f ′ ( x 0 ) = f ′ ( x 0 ) \lim\limits_{\Delta x \to 0} \frac{f(x_0 + 2\Delta x) - f(x_0 + \Delta x)}{\Delta x} = \lim\limits_{\Delta x \to 0} \left(\frac{f(x_0 + 2\Delta x) - f(x_0)}{\Delta x} - \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}\right) = 2f'(x_0) - f'(x_0) = f'(x_0) Δx0limΔxf(x0+x)f(x0+Δx)=Δx0lim(Δxf(x0+x)f(x0)Δxf(x0+Δx)f(x0))=2f(x0)f(x0)=f(x0)

例3 下列条件中,当 Δ x → 0 \Delta x \to 0 Δx0 时,使 f ( x ) f(x) f(x) x 0 x_0 x0 处不可导的条件是(D)

(A) Δ y \Delta y Δy Δ x \Delta x Δx 是等价无穷小量
(B) Δ y \Delta y Δy Δ x \Delta x Δx 是同阶无穷小量
© Δ y \Delta y Δy 是比 Δ x \Delta x Δx 较高阶的无穷小量
(D) Δ y \Delta y Δy 是比 Δ x \Delta x Δx 较低阶的无穷小量


f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x f'(x_0) = \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} f(x0)=Δx0limΔxΔy

  • (A) lim ⁡ Δ x → 0 Δ y Δ x = 1 \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1 Δx0limΔxΔy=1
  • (B) lim ⁡ Δ x → 0 Δ y Δ x = c \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = c Δx0limΔxΔy=c c c c 为非零常数)
  • © lim ⁡ Δ x → 0 Δ y Δ x = 0 \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0 Δx0limΔxΔy=0
  • (D) lim ⁡ Δ x → 0 Δ y Δ x = ∞ \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \infty Δx0limΔxΔy=

2. f ( x ) f(x) f(x) x 0 x_0 x0 处的左、右导数(单侧导数)

(1) 左导数

定义:设 y = f ( x ) y = f(x) y=f(x) 在包含 x 0 x_0 x0 的左邻域内有定义,若
lim ⁡ Δ x → 0 − Δ y Δ x = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim_{\Delta x \to 0^-} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
存在,则称 y = f ( x ) y = f(x) y=f(x) x 0 x_0 x0 处左可导,极限值称为左导数,记 f − ′ ( x 0 ) f'_-(x_0) f(x0),即
f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − Δ y Δ x = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 f'_-(x_0) = \lim_{\Delta x \to 0^-} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} f(x0)=Δx0limΔxΔy=xx0limxx0f(x)f(x0)

(2) 右导数

类似有右导数
f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + Δ y Δ x = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} f+(x0)=Δx0+limΔxΔy=xx0+limxx0f(x)f(x0)

  • f ( x ) f(x) f(x) x 0 x_{0} x0 处可导 ⇔ \Leftrightarrow f ( x ) f(x) f(x) x 0 x_{0} x0 处左右导数存在且相等

例4 y = ∣ x ∣ y = |x| y=x x = 0 x = 0 x=0 处的左、右导数


f − ′ ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 − − x − 0 x − 0 = − 1 , f'_-(0)=\lim _{x\rightarrow 0^{-}}\frac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0^{-}}\frac{-x-0}{x-0}=-1, f(0)=x0limx0f(x)f(0)=x0limx0x0=1,
f + ′ ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 + x − 0 x − 0 = 1 f'_+(0)=\lim _{x\rightarrow 0^{+}}\frac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0^{+}}\frac{x-0}{x-0}=1 f+(0)=x0+limx0f(x)f(0)=x0+limx0x0=1

例5 f ( x ) = { 1 − cos ⁡ x , x ≥ 0 x , x < 0 f(x) = \begin{cases}1 - \cos x, & x \geq 0 \\ x, & x < 0\end{cases} f(x)={1cosx,x,x0x<0 x = 0 x = 0 x=0 处的左右导数


f − ′ ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 − x − 0 x − 0 = 1 , f'_-(0) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{x - 0}{x - 0} = 1, f(0)=x0limx0f(x)f(0)=x0limx0x0=1,
f + ′ ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 + 1 − cos ⁡ x − 0 x − 0 = lim ⁡ x → 0 + x 2 2 ! x = 0 f'_+(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{1 - \cos x - 0}{x - 0} = \lim_{x \to 0^+} \frac{\frac{x^2}{2!}}{x} = 0 f+(0)=x0+limx0f(x)f(0)=x0+limx01cosx0=x0+limx2!x2=0

例6 f ( x ) = { x x < 0 ln ⁡ ( 1 + x ) x ≥ 0 f(x)=\begin{cases}x & x<0 \\ \ln(1+x) & x\geq 0\end{cases} f(x)={xln(1+x)x<0x0 x = 0 x=0 x=0 处的左右导数


f − ′ ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 − x − 0 x − 0 = 1 , f'_{-}(0)=\lim _{x\rightarrow 0^{-}}\frac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0^{-}}\frac{x-0}{x-0}=1, f(0)=x0limx0f(x)f(0)=x0limx0x0=1,
f + ′ ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 + ln ⁡ ( 1 + x ) − 0 x − 0 = lim ⁡ x → 0 + ln ⁡ ( 1 + x ) x = 1 f'_{+}(0)=\lim _{x\rightarrow 0^{+}}\frac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0^{+}}\frac{\ln(1+x)-0}{x-0}=\lim _{x\rightarrow 0^{+}}\frac{\ln(1+x)}{x}=1 f+(0)=x0+limx0f(x)f(0)=x0+limx0ln(1+x)0=x0+limxln(1+x)=1

f ( x ) f(x) f(x) x 0 x_{0} x0处可导 ⇔ f ( x ) \Leftrightarrow f(x) f(x) x 0 x_{0} x0处左右导数存在且相等

如:例4和例5:在 x = 0 x = 0 x=0处不可导;例6: f ′ ( 0 ) = 1 f'(0)=1 f(0)=1

3. f ( x ) f(x) f(x) x x x 处的导数(导函数)

lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x \lim _{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} limΔx0Δxf(x+Δx)f(x) 称为 f ( x ) f(x) f(x) x x x 的导数(导函数),记作
f ′ ( x ) , y ′ , d y d x , d f d x f^{\prime}(x), y^{\prime},\frac{d y}{dx},\frac{d f}{dx} f(x),y,dxdy,dxdf

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f^{\prime}(x)=\lim _{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)

  • f ′ ( x 0 ) f'(x_{0}) f(x0) f ′ ( x ) f'(x) f(x) 的关系: f ′ ( x 0 ) = f ′ ( x ) ∣ x = x 0 f'(x_{0})=\left.f^{\prime}(x)\right|_{x=x_{0}} f(x0)=f(x)x=x0

例7 求下列函数的导数

  1. y = C y = C y=C
  2. y = x n y = x^{n} y=xn
  3. y = sin ⁡ x y = \sin x y=sinx
  4. y = cos ⁡ x y = \cos x y=cosx
  5. y = a x y = a^{x} y=ax

提示

  • sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 , cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2},\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} sinαsinβ=2cos2α+βsin2αβ,cosαcosβ=2sin2α+βsin2αβ
  • ( x a ) ′ = lim ⁡ Δ x → 0 ( x + Δ x ) a − x a Δ x = a x a − 1 \left(x^{a}\right)^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{a}-x^{a}}{\Delta x}=a x^{a-1} (xa)=limΔx0Δx(x+Δx)axa=axa1
  • ( a x ) ′ = a x ln ⁡ a \left(a^{x}\right)^{\prime}=a^{x} \ln a (ax)=axlna,特别的 ( e x ) ′ = e x \left(e^{x}\right)^{\prime}=e^{x} (ex)=ex

二、可导与连续的关系

定理:若函数 f ( x ) f(x) f(x) x 0 x_{0} x0 处可导,则 f ( x ) f(x) f(x) x 0 x_{0} x0 处一定连续。

证明
可导 ⇒ f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x ⇒ lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 Δ y Δ x × Δ x = 0 \Rightarrow f^{\prime}(x_{0})=\lim\limits_{\Delta x\rightarrow0}\frac{\Delta y}{\Delta x}\Rightarrow\lim\limits_{\Delta x\rightarrow0}\Delta y=\lim\limits_{\Delta x\rightarrow0}\frac{\Delta y}{\Delta x}\times\Delta x = 0 f(x0)=Δx0limΔxΔyΔx0limΔy=Δx0limΔxΔy×Δx=0,即连续。

  • 可导必连续,连续不一定可导,如 y = ∣ x ∣ y = |x| y=x x = 0 x = 0 x=0 处连续不可导。
  • 不连续一定不可导。

例8 讨论 f ( x ) = { x sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\left\{\begin{array}{ll}x\sin\frac{1}{x},&x\neq0\\0,&x = 0\end{array}\right. f(x)={xsinx1,0,x=0x=0 x = 0 x = 0 x=0处的连续性和可导性。

例9 讨论 f ( x ) = { x − 1 , x ≤ 0 2 x , 0 < x ≤ 1 x 2 + 1 , 1 < x ≤ 2 x 2 2 + 4 x , x > 2 f(x)=\left\{\begin{array}{ll}x - 1,&x\leq0\\2x,&0\lt x\leq1\\x^{2}+1,&1\lt x\leq2\\\frac{x^{2}}{2}+4x,&x\gt2\end{array}\right. f(x)= x1,2x,x2+1,2x2+4x,x00<x11<x2x>2 x = 0 , x = 1 , x = 2 x = 0,x = 1,x = 2 x=0,x=1,x=2处的连续性和可导性。

三、导数的几何意义

f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 表示曲线 y = f ( x ) y=f(x) y=f(x) 在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 处的切线斜率,即 k = f ′ ( x 0 ) k=f^{\prime}\left(x_{0}\right) k=f(x0)

切线方程为:
y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y - y_0 = f'(x_0)(x - x_0) yy0=f(x0)(xx0)

法线方程为:
y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) yy0=f(x0)1(xx0)

例10 求曲线 y = 1 x y = \frac{1}{x} y=x1 在点 ( 1 , 1 ) (1, 1) (1,1) 处的切线方程与法线方程。

  1. 首先求导数:
    y ′ = ( 1 x ) ′ = − 1 x 2 y' = \left(\frac{1}{x}\right)' = -\frac{1}{x^2} y=(x1)=x21
  2. x = 1 x=1 x=1 处的导数为:
    f ′ ( 1 ) = − 1 f'(1) = -1 f(1)=1
  3. 切线方程:
    y − 1 = − 1 ( x − 1 ) ⇒ y = − x + 2 y - 1 = -1(x - 1) \Rightarrow y = -x + 2 y1=1(x1)y=x+2
  4. 法线方程(斜率为负倒数):
    y − 1 = 1 ( x − 1 ) ⇒ y = x y - 1 = 1(x - 1) \Rightarrow y = x y1=1(x1)y=x

作业

  1. f ( x ) f(x) f(x) x 0 x_0 x0 处可导,求
    lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 − Δ x ) Δ x \lim_{\Delta x \to 0}\frac{f(x_0 + \Delta x)-f(x_0 - \Delta x)}{\Delta x} Δx0limΔxf(x0+Δx)f(x0Δx)


  2. f ( x ) = { 2 3 x 3 x ≤ 1 x 2 x > 1 f(x)=\begin{cases} \frac{2}{3}x^{3} & x\leq1 \\ x^{2} & x > 1 \end{cases} f(x)={32x3x2x1x>1
    讨论 f − ′ ( 1 ) , f + ′ ( 1 ) , f ′ ( 1 ) f'_{-}(1),f'_{+}(1),f'(1) f(1),f+(1),f(1) 是否存在。

  3. 求下列函数的导数

    • (1) y = 1 x 2 y = \frac{1}{x^{2}} y=x21
    • (2) y = x 4 x y=\frac{x^{4}}{\sqrt{x}} y=x x4
    • (3) y = x 3 ⋅ x 5 y = x^{3}\cdot\sqrt[5]{x} y=x35x
  4. 讨论函数
    f ( x ) = { x sin ⁡ 1 x , x e q 0 0 , x = 0 f(x)=\begin{cases} x\sin\frac{1}{x}, & x eq0 \\ 0, & x = 0 \end{cases} f(x)={xsinx1,0,xeq0x=0
    x = 0 x = 0 x=0 处的连续性和可导性。


  5. f ( x ) = { x 2 , x ⩽ 1 a x + b , x > 1 f(x)=\begin{cases} x^{2}, & x\leqslant1 \\ ax + b, & x>1 \end{cases} f(x)={x2,ax+b,x1x>1
    f ( x ) f(x) f(x) x = 1 x = 1 x=1 处既连续又可导,求 a , b a,b a,b 的值。

  6. 求曲线 y = x 2 3 y=\sqrt[3]{x^{2}} y=3x2 上点 ( 1 , 1 ) (1,1) (1,1) 处的切线方程和法线方程。

§2.3 函数的求导法则

一、求导法则

1. 四则法则

定理1 u ( x ) , v ( x ) u(x),v(x) u(x),v(x) x x x 处可导,则它们的和、差、积、商在 x x x 处都可导,且:

  1. 加法法则
    ( u ( x ) + v ( x ) ) ′ = u ′ ( x ) + v ′ ( x ) (u(x)+v(x))^\prime = u^\prime(x) + v^\prime(x) (u(x)+v(x))=u(x)+v(x)

  2. 减法法则
    ( u ( x ) − v ( x ) ) ′ = u ′ ( x ) − v ′ ( x ) (u(x)-v(x))^\prime = u^\prime(x) - v^\prime(x) (u(x)v(x))=u(x)v(x)

  3. 乘法法则
    ( u ( x ) ⋅ v ( x ) ) ′ = u ′ ( x ) ⋅ v ( x ) + u ( x ) ⋅ v ′ ( x ) (u(x)\cdot v(x))^\prime = u^\prime(x)\cdot v(x) + u(x)\cdot v^\prime(x) (u(x)v(x))=u(x)v(x)+u(x)v(x)

  4. 除法法则
    ( u ( x ) v ( x ) ) ′ = u ′ ( x ) ⋅ v ( x ) − u ( x ) ⋅ v ′ ( x ) v 2 ( x ) \left(\frac{u(x)}{v(x)}\right)^\prime = \frac{u^\prime(x)\cdot v(x) - u(x)\cdot v^\prime(x)}{v^2(x)} (v(x)u(x))=v2(x)u(x)v(x)u(x)v(x)

证明(以加法和乘法为例):

  • 加法法则
    ( u ( x ) + v ( x ) ) ′ = lim ⁡ Δ x → 0 ( u ( x + Δ x ) + v ( x + Δ x ) ) − ( u ( x ) + v ( x ) ) Δ x = u ′ ( x ) + v ′ ( x ) (u(x)+v(x))' = \lim_{\Delta x \to 0} \frac{(u(x+\Delta x)+v(x+\Delta x)) - (u(x)+v(x))}{\Delta x} = u'(x) + v'(x) (u(x)+v(x))=Δx0limΔx(u(x+Δx)+v(x+Δx))(u(x)+v(x))=u(x)+v(x)

  • 乘法法则
    ( u ( x ) ⋅ v ( x ) ) ′ = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x (u(x)\cdot v(x))' = \lim_{\Delta x \to 0} \frac{u(x+\Delta x)v(x+\Delta x) - u(x)v(x)}{\Delta x} (u(x)v(x))=Δx0limΔxu(x+Δx)v(x+Δx)u(x)v(x)
    = lim ⁡ Δ x → 0 [ u ( x + Δ x ) − u ( x ) Δ x v ( x + Δ x ) + u ( x ) v ( x + Δ x ) − v ( x ) Δ x ] = \lim_{\Delta x \to 0} \left[ \frac{u(x+\Delta x)-u(x)}{\Delta x}v(x+\Delta x) + u(x)\frac{v(x+\Delta x)-v(x)}{\Delta x} \right] =Δx0lim[Δxu(x+Δx)u(x)v(x+Δx)+u(x)Δxv(x+Δx)v(x)]
    = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) = u'(x)v(x) + u(x)v'(x) =u(x)v(x)+u(x)v(x)

  1. 求导公式,加法减法法则(1)(2)可推广至有限个函数:
    ( u 1 ( x ) ± u 2 ( x ) ± ⋯ ± u n ( x ) ) ′ = u 1 ′ ( x ) ± u 2 ′ ( x ) ± ⋯ ± u n ′ ( x ) (u_1(x) \pm u_2(x) \pm \cdots \pm u_n(x))' = u_1'(x) \pm u_2'(x) \pm \cdots \pm u_n'(x) (u1(x)±u2(x)±±un(x))=u1(x)±u2(x)±±un(x)

  2. 求导公式乘法法则(3)推广到三个函数乘积的导数:
    ( u v w ) ′ = u ′ v w + u v ′ w + u v w ′ (uvw)' = u'vw + uv'w + uvw' (uvw)=uvw+uvw+uvw

  3. 常数倍法则:
    ( C u ( x ) ) ′ = C u ′ ( x ) ( C 为常数 ) (Cu(x))' = Cu'(x) \quad (C为常数) (Cu(x))=Cu(x)(C为常数)

例1 求下列函数的导数:

  1. y = 2 x 3 − 5 x 2 + 3 x − 7 y = 2x^3 - 5x^2 + 3x - 7 y=2x35x2+3x7
  2. y = e x ( sin ⁡ x + cos ⁡ x ) y = e^x(\sin x + \cos x) y=ex(sinx+cosx)
  3. y = x 4 3 − 4 x 3 y = \frac{x^4}{3} - \frac{4}{x^3} y=3x4x34
  4. y = x 2 − 1 x 2 + 1 y = \frac{x^2 - 1}{x^2 + 1} y=x2+1x21
  5. y = tan ⁡ x y = \tan x y=tanx
  6. y = cot ⁡ x y = \cot x y=cotx
  7. y = sec ⁡ x y = \sec x y=secx
  8. y = csc ⁡ x y = \csc x y=cscx

2. 反函数的求导法则

定理2 y = f ( x ) y = f(x) y=f(x) 在区间 I x I_x Ix 上单调可导,且 f ′ ( x ) ≠ 0 f'(x) \neq 0 f(x)=0,则其反函数 x = f − 1 ( y ) x = f^{-1}(y) x=f1(y) 在对应区间 I y I_y Iy 上也可导,且:
( f − 1 ( y ) ) ′ = 1 f ′ ( x ) (f^{-1}(y))' = \frac{1}{f'(x)} (f1(y))=f(x)1

证明
对函数 x = f − 1 ( y ) x = f^{-1}(y) x=f1(y),设 Δ x = f − 1 ( y + Δ y ) − f − 1 ( y ) \Delta x = f^{-1}(y+\Delta y) - f^{-1}(y) Δx=f1(y+Δy)f1(y),当 Δ y ≠ 0 \Delta y \neq 0 Δy=0 时, Δ x ≠ 0 \Delta x \neq 0 Δx=0(否则与单射性矛盾)。于是:
Δ x Δ y = 1 Δ y Δ x ⟹ lim ⁡ Δ y → 0 Δ x Δ y = lim ⁡ Δ x → 0 1 Δ y Δ x = 1 f ′ ( x ) \frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta x}} \implies \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta x \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{f'(x)} ΔyΔx=ΔxΔy1Δy0limΔyΔx=Δx0limΔxΔy1=f(x)1

例2 求下列反三角函数的导数:

  • y = arcsin ⁡ x y = \arcsin x y=arcsinx
  • y = arccos ⁡ x y = \arccos x y=arccosx
  • y = arctan ⁡ x y = \arctan x y=arctanx
  • y = arccot  x y = \text{arccot } x y=arccot x

例3 求对数函数的导数:

  • y = log ⁡ a x y = \log_a x y=logax

3. 复合函数求导法则

定理3 y = f [ φ ( x ) ] y = f[\varphi(x)] y=f[φ(x)],若 u = φ ( x ) u = \varphi(x) u=φ(x) x x x 处可导, y = f ( u ) y = f(u) y=f(u) u u u 处可导,则复合函数 y = f [ φ ( x ) ] y = f[\varphi(x)] y=f[φ(x)] x x x 处可导,且:
d y d x = f ′ ( u ) ⋅ φ ′ ( x ) \frac{dy}{dx} = f'(u) \cdot \varphi'(x) dxdy=f(u)φ(x)

证明
设自变量有改变量 Δ x \Delta x Δx,则:
Δ u = φ ( x + Δ x ) − φ ( x ) , Δ y = f ( u + Δ u ) − f ( u ) \Delta u = \varphi(x+\Delta x) - \varphi(x), \quad \Delta y = f(u+\Delta u) - f(u) Δu=φ(x+Δx)φ(x),Δy=f(u+Δu)f(u)
由导数定义:
Δ y Δ x = Δ y Δ u ⋅ Δ u Δ x \frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} ΔxΔy=ΔuΔyΔxΔu
两边取极限:
lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ u → 0 Δ y Δ u ⋅ lim ⁡ Δ x → 0 Δ u Δ x = f ′ ( u ) ⋅ φ ′ ( x ) \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = f'(u) \cdot \varphi'(x) Δx0limΔxΔy=Δu0limΔuΔyΔx0limΔxΔu=f(u)φ(x)

:复合函数求导法则可推广至有限次复合,如:
y = f [ g [ φ ( x ) ] ] ⟹ d y d x = f ′ ( u ) ⋅ g ′ ( v ) ⋅ φ ′ ( x ) y = f[g[\varphi(x)]] \implies \frac{dy}{dx} = f'(u) \cdot g'(v) \cdot \varphi'(x) y=f[g[φ(x)]]dxdy=f(u)g(v)φ(x)

例4 求下列复合函数的导数:

  1. y = ( 1 + 2 x ) 30 y = (1+2x)^{30} y=(1+2x)30
  2. y = ln ⁡ ( sin ⁡ x ) y = \ln(\sin x) y=ln(sinx)
  3. y = e − x y = e^{-x} y=ex
  4. y = ( x 2 x + 1 ) n y = \left(\frac{x}{2x+1}\right)^n y=(2x+1x)n
  5. y = ln ⁡ ( x − x 2 + a 2 ) y = \ln(x - \sqrt{x^2 + a^2}) y=ln(xx2+a2 )
  6. y = x 2 a 2 − x 2 y = \frac{x}{2} \sqrt{a^2 - x^2} y=2xa2x2
  7. y = e 1 + cos ⁡ x y = e^{\sqrt{1+\cos x}} y=e1+cosx

4. 取对数求导法则

适用类型

  1. 幂指函数 y = f ( x ) g ( x ) y = f(x)^{g(x)} y=f(x)g(x)
  2. 形如 y = a x + b c x + d n y = \sqrt[n]{\frac{ax + b}{cx + d}} y=ncx+dax+b 的函数

求导步骤
3. 等式两边取对数
4. 等式两边对 x x x 求导
5. 解出 y ′ y' y

例6 求下列函数的导数:
6. y = x x y = x^x y=xx
7. y = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} y=(x3)(x4)(x1)(x2)


5. 隐函数求导法则

定义:由方程 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0 确定的函数 y = f ( x ) y = f(x) y=f(x) 称为隐函数。

求导法则
对方程 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0 两边关于 x x x 求导,将 y y y 视为 x x x 的函数,解出 y ′ y' y

例5 求下列隐函数的导数:

  1. y 2 = 2 p x y^2 = 2px y2=2px
  2. y = x ln ⁡ y y = x \ln y y=xlny
  3. y 5 + 2 y − x − 3 x 7 = 0 y^5 + 2y - x - 3x^7 = 0 y5+2yx3x7=0,求 y ′ ∣ x = 0 \left.y'\right|_{x=0} yx=0
  4. x 2 + x y + y 2 = 4 x^2 + xy + y^2 = 4 x2+xy+y2=4,求过点 (2,-2) 的切线方程

6. 参数方程确定函数的求导法则

(1) 参数方程确定的函数
参数方程 { x = φ ( t ) y = ψ ( t ) \begin{cases}x = \varphi(t)\\y = \psi(t)\end{cases} {x=φ(t)y=ψ(t) 消参 ⇒ y = f ( x ) \Rightarrow y = f(x) y=f(x)
(2) 参数方程确定函数的求导法则
参数方程通过消参求函数 y = f ( x ) y = f(x) y=f(x)不是很容易的事,下面建立一般的求导法则,并给出求导公式。

x = φ ( t ) x=\varphi(t) x=φ(t)的反函数 t = φ − 1 ( x ) t = \varphi^{-1}(x) t=φ1(x)代入 y = ψ ( t ) y=\psi(t) y=ψ(t)得复合函数 y = ψ ( φ − 1 ( x ) ) y=\psi(\varphi^{-1}(x)) y=ψ(φ1(x)),由复合函数求导法则和反函数求导法则得

d y d x = ψ ′ ( t ) × ( φ − 1 ( x ) ) ′ = ψ ′ ( t ) × 1 φ ′ ( t ) = ψ ′ ( t ) φ ′ ( t ) \frac{dy}{dx}=\psi^{\prime}(t)\times(\varphi^{-1}(x))^{\prime}=\psi^{\prime}(t)\times\frac{1}{\varphi^{\prime}(t)}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)} dxdy=ψ(t)×(φ1(x))=ψ(t)×φ(t)1=φ(t)ψ(t)

例7 求下列参数方程的导数:

  1. { x = a cos ⁡ t y = a sin ⁡ t \begin{cases} x = a\cos t \\ y = a\sin t \end{cases} {x=acosty=asint
  2. { x = arctan ⁡ t y = ln ⁡ ( 1 + t 2 ) \begin{cases} x = \arctan t \\ y = \ln(1+t^2) \end{cases} {x=arctanty=ln(1+t2)

二、综合杂例

例1 分段函数求导:
f ( x ) = { x − 1 x ≤ 0 2 x 0 < x ≤ 1 x 2 + 1 1 < x ≤ 2 x 2 + 4 x > 2 f(x) = \begin{cases} x-1 & x \leq 0 \\ 2x & 0 < x \leq 1 \\ x^2 + 1 & 1 < x \leq 2 \\ \frac{x}{2} + 4 & x > 2 \end{cases} f(x)= x12xx2+12x+4x00<x11<x2x>2
f ′ ( x ) f'(x) f(x)

例2 求导:
y = 3 x + x 3 + x x + 3 3 y = 3^x + x^3 + x^x + 3^3 y=3x+x3+xx+33

例3 已知 y = e f 2 ( x ) y = e^{f^2(x)} y=ef2(x),若 f ′ ( a ) = 1 2 f ( a ) f'(a) = \frac{1}{2f(a)} f(a)=2f(a)1,证明 y ( a ) = y ′ ( a ) y(a) = y'(a) y(a)=y(a)

例4 求参数 a , b a,b a,b
f ( x ) = { x 2 − 1 x ≤ 1 a x + b x > 1 f(x) = \begin{cases} x^2 - 1 & x \leq 1 \\ ax + b & x > 1 \end{cases} f(x)={x21ax+bx1x>1
x = 1 x=1 x=1 处可导

例5 已知 f ′ ( − 1 ) = 3 f'(-1) = 3 f(1)=3,求:
lim ⁡ h → 0 f ( − 1 − 2 h ) − f ( − 1 ) h \lim_{h \to 0} \frac{f(-1-2h) - f(-1)}{h} h0limhf(12h)f(1)


作业

1.基本求导练习

1. 求下列函数的导数

  1. y = 3 x 2 − x + 5 y = 3x^2 - x + 5 y=3x2x+5
  2. y = 1 − x 3 x y = \frac{1-x^3}{\sqrt{x}} y=x 1x3
  3. y = x ln ⁡ x y = x\ln x y=xlnx
  4. y = 5 x 1 + x 2 y = \frac{5x}{1+x^2} y=1+x25x

2. 求下列函数在给定点的导数

  1. y = θ sin ⁡ θ + 1 2 cos ⁡ θ y = \theta \sin \theta + \frac{1}{2}\cos \theta y=θsinθ+21cosθ,求 d y d θ ∣ θ = π 4 \left.\frac{dy}{d\theta}\right|_{\theta=\frac{\pi}{4}} dθdy θ=4π
  2. f ( x ) = 3 5 − x + x 2 5 f(x) = \frac{3}{5-x} + \frac{x^2}{5} f(x)=5x3+5x2,求 f ′ ( 0 ) f'(0) f(0)

3. 求下列函数的导数

  1. y = ( 1 + x 2 ) 5 y = (1+x^2)^5 y=(1+x2)5
  2. y = a 2 − x 2 y = \sqrt{a^2 - x^2} y=a2x2
  3. y = arctan ⁡ ( 1 + x 2 ) y = \arctan(1+x^2) y=arctan(1+x2)
  4. y = sin ⁡ n x y = \sin nx y=sinnx
  5. y = cos ⁡ 3 x 2 y = \cos^3\frac{x}{2} y=cos32x
  6. y = ln ⁡ tan ⁡ x 3 y = \ln\tan\frac{x}{3} y=lntan3x
  7. y = arccos ⁡ 1 x y = \arccos\frac{1}{x} y=arccosx1
  8. y = lg ⁡ ( x − x 2 − a 2 ) y = \lg(x - \sqrt{x^2 - a^2}) y=lg(xx2a2 )
  9. y = e − 3 x 2 y = e^{-3x^2} y=e3x2
  10. y = ( arcsin ⁡ x 2 ) 2 y = (\arcsin\frac{x}{2})^2 y=(arcsin2x)2

2.进阶求导练习

4. 求下列函数的导数

  1. y = x 1 − x 1 + x y = x\sqrt{\frac{1-x}{1+x}} y=x1+x1x
  2. y = ( sin ⁡ x ) tan ⁡ x y = (\sin x)^{\tan x} y=(sinx)tanx

5. 求下列方程所确定隐函数的导数 d y d x \frac{dy}{dx} dxdy

  1. x 2 + y 2 − x y = 1 x^2 + y^2 - xy = 1 x2+y2xy=1
  2. y = x + ln ⁡ y y = x + \ln y y=x+lny
  3. arcsin ⁡ y = e x + y \arcsin y = e^{x+y} arcsiny=ex+y

6. 求曲线 y 3 + y 2 = 2 x y^3 + y^2 = 2x y3+y2=2x 在 (1,1) 处的切线方程与法线方程

7. 求下列参数方程所确定函数的导数

  1. { x = 2 t − t 2 y = 3 t − t 3 \begin{cases} x = 2t - t^2 \\ y = 3t - t^3 \end{cases} {x=2tt2y=3tt3,求 d y d x \frac{dy}{dx} dxdy
  2. { x = θ ( 1 − sin ⁡ θ ) y = θ cos ⁡ θ \begin{cases} x = \theta(1-\sin\theta) \\ y = \theta\cos\theta \end{cases} {x=θ(1sinθ)y=θcosθ,求 d y d x \frac{dy}{dx} dxdy

8. 讨论函数 f ( x ) f(x) f(x) x = 0 x=0 x=0 处的性质
f ( x ) = { x + 1 x < 0 k 2 x = 0 k x e x + 1 x > 0 f(x) = \begin{cases} x+1 & x < 0 \\ k^2 & x = 0 \\ kxe^x + 1 & x > 0 \end{cases} f(x)= x+1k2kxex+1x<0x=0x>0
(1) k k k 为何值时 f ( x ) f(x) f(x) 有极限;
(2) k k k 为何值时 f ( x ) f(x) f(x) 连续;
(3) k k k 为何值时 f ( x ) f(x) f(x) 可导。

9. 求 f ( x ) = ∣ x 2 − 1 ∣ f(x) = |x^2 - 1| f(x)=x21∣ 的导数

10. 证明:

  1. 可导的偶函数的导数为奇函数;
  2. 可导的奇函数的导数是偶函数。

相关文章:

  • 求职意向商务/BD简历模板
  • 通讯的基础概念:涵盖串行通信、并行通信、TCP、UDP、Socket 等关键概念和技术
  • [AI Workflow] 基于多语种知识库的 Dify Workflow 构建与优化实践
  • 统计术语学习
  • 零信任架构:重塑网络安全的IT新范式
  • AI与思维模型【76】——SWOT思维模型
  • PyTorch生成式人工智能实战(3)——分类任务详解
  • Unity3D Lua集成技术指南
  • 含锡废水处理的经济效益
  • Android APP 热修复原理
  • java.lang.ArrayIndexOutOfBoundsException: 11
  • 时间序列预测模型比较分析:SARIMAX、RNN、LSTM、Prophet 及 Transformer
  • 51单片机中断
  • Electron从入门到入门
  • Nacos简介—2.Nacos的原理简介
  • Linux:进程间通信->匿名管道实现内存池
  • 深入剖析 Vue 双向数据绑定机制 —— 从响应式原理到 v-model 实现全解析
  • Android中的多线程
  • ubuntu20.04安装x11vnc远程桌面
  • 如何成功防护T级超大流量的DDoS攻击
  • 白酒瓶“神似”北京第一高楼被判侵权,法院一审判赔45万并停售
  • 手机号旧机主信用卡欠款、新机主被催收骚扰四年,光大银行济南分行回应
  • 万能险新规落地:保险期限不得低于五年,明确万能险销售“负面清单”
  • 龚曙光:散文家永远只有一个视角,就是“我与时代”
  • 刘非履新浙江省委常委、杭州市委书记,曾在吉湘云多省任职
  • 中科院新增三名副秘书长