高等数学第二章---导数与微分(2.1~2.3)
§2.1 引例
上一章研究函数连续性时给出了自变量改变量 Δ x \Delta x Δx 和因变量改变量 Δ y \Delta y Δy,在实际问题中经常需要研究因变量 y y y 随自变量 x x x 变化快慢的程度,即平均变化率 Δ y Δ x \frac{\Delta y}{\Delta x} ΔxΔy 和瞬时变化率 lim Δ x → 0 Δ y Δ x \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x} Δx→0limΔxΔy。下面从两个实际问题出发,抽象出共同的数学本质,即瞬时变化率 lim Δ x → 0 Δ y Δ x \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x} Δx→0limΔxΔy 这一数学模型。
例1 变速直线运动的速度问题
已知一物体作变速直线运动,路程是时间的函数 s = s ( t ) s = s(t) s=s(t)。求 t 0 t_{0} t0 时刻的瞬时速度。
解:由于物体作变速运动,显然不能孤立地计算某一时刻的瞬时速度。先让时间 t t t 在 t 0 t_{0} t0 处产生改变量 Δ t \Delta t Δt,然后计算该时间段上的平均速度
v ˉ = Δ s Δ t = s ( t 0 + Δ t ) − s ( t 0 ) Δ t \bar{v}=\frac{\Delta s}{\Delta t}=\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\Delta t} vˉ=ΔtΔs=Δts(t0+Δt)−s(t0)
最后当 Δ t → 0 \Delta t \rightarrow 0 Δt→0 时求极限得到 t 0 t_{0} t0 时刻的瞬时速度
v ( t 0 ) = lim Δ t → 0 Δ s Δ t = lim Δ t → 0 s ( t 0 + Δ t ) − s ( t 0 ) Δ t (1) v\left(t_{0}\right)=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\Delta t} \tag{1} v(t0)=Δt→0limΔtΔs=Δt→0limΔts(t0+Δt)−s(t0)(1)
例2 曲线的切线斜率问题
设曲线 y = f ( x ) y = f(x) y=f(x),求曲线上 M 0 ( x 0 , y 0 ) M_{0}(x_{0},y_{0}) M0(x0,y0) 处的切线斜率。
解:由于切线是割线的极限位置,因此不能孤立地计算一点处的切线斜率。让自变量 x x x 在 x 0 x_{0} x0 处产生改变量 Δ x \Delta x Δx,即在曲线上 M 0 ( x 0 , y 0 ) M_0(x_0,y_0) M0(x0,y0) 附近再找一点 M ( x 0 + Δ x , y 0 + Δ y ) M(x_0 + \Delta x,y_0+\Delta y) M(x0+Δx,y0+Δy),然后作割线 M M 0 MM_0 MM0。割线 M M 0 MM_0 MM0 的斜率
k ˉ = Δ y Δ x = f ( x 0 + Δ x ) − f ( x 0 ) Δ x \bar{k}=\frac{\Delta y}{\Delta x}=\frac{f(x_0 + \Delta x)-f(x_0)}{\Delta x} kˉ=ΔxΔy=Δxf(x0+Δx)−f(x0)
最后当点 M M M 沿曲线无限趋近于 M 0 M_0 M0 时,即当 Δ x → 0 \Delta x\rightarrow0 Δx→0 时,割线 M M 0 MM_0 MM0 达到极限位置即为切线 M 0 T M_0T M0T,于是切线斜率为
k = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x (2) k = \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\tag{2} k=Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)(2)
总结:上述两个问题的实际意义不同,但有共同的数学本质,即有相同的数学模型
lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
我们把这种瞬时变化率的模型称为导数。
§2.2 导数的概念
一、导数的定义
1. f ( x ) f(x) f(x) 在 x 0 x_{0} x0 处的导数
定义:设 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_{0} x0 的某邻域内有定义,当 x x x 在 x 0 x_{0} x0 处有改变量 Δ x \Delta x Δx 时,相应有 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) Δy=f(x0+Δx)−f(x0)。若
lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
存在,则称 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_{0} x0 处可导,极限值称为导数,记作
f ′ ( x 0 ) , y ′ ∣ x = x 0 , d y d x ∣ x = x 0 , d f d x ∣ x = x 0 f^{\prime}\left(x_{0}\right), y^{\prime}\mid_{x=x_{0}},\left.\quad\frac{d y}{d x}\right|_{x=x_{0}},\left.\quad\frac{d f}{d x}\right|_{x=x_{0}} f′(x0),y′∣x=x0,dxdy x=x0,dxdf x=x0
即
f ′ ( x 0 ) = y ′ ∣ x = x 0 = d y d x ∣ x = x 0 = d f d x ∣ x = x 0 = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=y^{\prime}\mid_{x=x_{0}}=\left.\frac{d y}{d x}\right|_{x=x_{0}}=\left.\frac{d f}{d x}\right|_{x=x_{0}}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f′(x0)=y′∣x=x0=dxdy x=x0=dxdf x=x0=Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
否则,则称 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_{0} x0 处不可导。
注: y = f ( x ) y=f(x) y=f(x) 在 x 0 x_{0} x0 处导数的几种形式:
- f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} f′(x0)=limΔx→0ΔxΔy
- f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f′(x0)=limΔx→0Δxf(x0+Δx)−f(x0)
- 记 x 0 + Δ x = x x_{0}+\Delta x=x x0+Δx=x,则 f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} f′(x0)=limx→x0x−x0f(x)−f(x0)
- 记 Δ x = h \Delta x=h Δx=h,则 f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} f′(x0)=limh→0hf(x0+h)−f(x0)
例1 求 y = x 2 y=x^{2} y=x2 在 x = 2 x=2 x=2 处的导数
解:
f ′ ( 2 ) = lim x → 2 f ( x ) − f ( 2 ) x − 2 = lim x → 2 x 2 − 4 x − 2 = lim x → 2 ( x + 2 ) = 4 f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2}(x+2)=4 f′(2)=x→2limx−2f(x)−f(2)=x→2limx−2x2−4=x→2lim(x+2)=4
例2 若 f ( x ) f(x) f(x) 在 x 0 x_{0} x0 处可导,则下列各式中结果等于 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f′(x0) 的是(D)
(A) lim Δ x → 0 f ( x 0 ) − f ( x 0 + Δ x ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}\right)-f\left(x_{0}+\Delta x\right)}{\Delta x} limΔx→0Δxf(x0)−f(x0+Δx)
(B) lim Δ x → 0 f ( x 0 − Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}-\Delta x\right)-f\left(x_{0}\right)}{\Delta x} limΔx→0Δxf(x0−Δx)−f(x0)
© lim Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+2 \Delta x\right)-f\left(x_{0}\right)}{\Delta x} limΔx→0Δxf(x0+2Δx)−f(x0)
(D) lim Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 + Δ x ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+2 \Delta x\right)-f\left(x_{0}+\Delta x\right)}{\Delta x} limΔx→0Δxf(x0+2Δx)−f(x0+Δx)
解:
- f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f′(x0)=limΔx→0Δxf(x0+Δx)−f(x0)
- (A) lim Δ x → 0 f ( x 0 ) − f ( x 0 + Δ x ) Δ x = − lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = − f ′ ( x 0 ) \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}\right)-f\left(x_{0}+\Delta x\right)}{\Delta x}=-\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=-f^{\prime}\left(x_{0}\right) limΔx→0Δxf(x0)−f(x0+Δx)=−limΔx→0Δxf(x0+Δx)−f(x0)=−f′(x0)
- (B) lim Δ x → 0 f ( x 0 − Δ x ) − f ( x 0 ) Δ x = − lim Δ x → 0 f ( x 0 + ( − Δ x ) ) − f ( x 0 ) − Δ x = − lim h → 0 f ( x 0 + h ) − f ( x 0 ) h = − f ′ ( x 0 ) \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}-\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=-\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+(-\Delta x)\right)-f\left(x_{0}\right)}{-\Delta x}=-\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=-f^{\prime}\left(x_{0}\right) limΔx→0Δxf(x0−Δx)−f(x0)=−limΔx→0−Δxf(x0+(−Δx))−f(x0)=−limh→0hf(x0+h)−f(x0)=−f′(x0)
- © lim Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 ) Δ x = 2 lim Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 ) 2 Δ x = 2 f ′ ( x 0 ) \lim\limits_{\Delta x \to 0} \frac{f(x_0 + 2\Delta x) - f(x_0)}{\Delta x} = 2\lim\limits_{\Delta x \to 0} \frac{f(x_0 + 2\Delta x) - f(x_0)}{2\Delta x} = 2f'(x_0) Δx→0limΔxf(x0+2Δx)−f(x0)=2Δx→0lim2Δxf(x0+2Δx)−f(x0)=2f′(x0)
- (D) lim Δ x → 0 f ( x 0 + 2 Δ x ) − f ( x 0 + Δ x ) Δ x = lim Δ x → 0 ( f ( x 0 + 2 Δ x ) − f ( x 0 ) Δ x − f ( x 0 + Δ x ) − f ( x 0 ) Δ x ) = 2 f ′ ( x 0 ) − f ′ ( x 0 ) = f ′ ( x 0 ) \lim\limits_{\Delta x \to 0} \frac{f(x_0 + 2\Delta x) - f(x_0 + \Delta x)}{\Delta x} = \lim\limits_{\Delta x \to 0} \left(\frac{f(x_0 + 2\Delta x) - f(x_0)}{\Delta x} - \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}\right) = 2f'(x_0) - f'(x_0) = f'(x_0) Δx→0limΔxf(x0+2Δx)−f(x0+Δx)=Δx→0lim(Δxf(x0+2Δx)−f(x0)−Δxf(x0+Δx)−f(x0))=2f′(x0)−f′(x0)=f′(x0)
例3 下列条件中,当 Δ x → 0 \Delta x \to 0 Δx→0 时,使 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处不可导的条件是(D)
(A) Δ y \Delta y Δy 与 Δ x \Delta x Δx 是等价无穷小量
(B) Δ y \Delta y Δy 与 Δ x \Delta x Δx 是同阶无穷小量
© Δ y \Delta y Δy 是比 Δ x \Delta x Δx 较高阶的无穷小量
(D) Δ y \Delta y Δy 是比 Δ x \Delta x Δx 较低阶的无穷小量
解:
f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x f'(x_0) = \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} f′(x0)=Δx→0limΔxΔy
- (A) lim Δ x → 0 Δ y Δ x = 1 \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1 Δx→0limΔxΔy=1
- (B) lim Δ x → 0 Δ y Δ x = c \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = c Δx→0limΔxΔy=c ( c c c 为非零常数)
- © lim Δ x → 0 Δ y Δ x = 0 \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0 Δx→0limΔxΔy=0
- (D) lim Δ x → 0 Δ y Δ x = ∞ \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \infty Δx→0limΔxΔy=∞
2. f ( x ) f(x) f(x) 在 x 0 x_0 x0 处的左、右导数(单侧导数)
(1) 左导数
定义:设 y = f ( x ) y = f(x) y=f(x) 在包含 x 0 x_0 x0 的左邻域内有定义,若
lim Δ x → 0 − Δ y Δ x = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim_{\Delta x \to 0^-} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} Δx→0−limΔxΔy=Δx→0−limΔxf(x0+Δx)−f(x0)
存在,则称 y = f ( x ) y = f(x) y=f(x) 在 x 0 x_0 x0 处左可导,极限值称为左导数,记 f − ′ ( x 0 ) f'_-(x_0) f−′(x0),即
f − ′ ( x 0 ) = lim Δ x → 0 − Δ y Δ x = lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 f'_-(x_0) = \lim_{\Delta x \to 0^-} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} f−′(x0)=Δx→0−limΔxΔy=x→x0−limx−x0f(x)−f(x0)
(2) 右导数
类似有右导数
f + ′ ( x 0 ) = lim Δ x → 0 + Δ y Δ x = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} f+′(x0)=Δx→0+limΔxΔy=x→x0+limx−x0f(x)−f(x0)
注:
- f ( x ) f(x) f(x) 在 x 0 x_{0} x0 处可导 ⇔ \Leftrightarrow ⇔ f ( x ) f(x) f(x) 在 x 0 x_{0} x0 处左右导数存在且相等
例4 求 y = ∣ x ∣ y = |x| y=∣x∣ 在 x = 0 x = 0 x=0 处的左、右导数
解:
f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x − 0 = lim x → 0 − − x − 0 x − 0 = − 1 , f'_-(0)=\lim _{x\rightarrow 0^{-}}\frac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0^{-}}\frac{-x-0}{x-0}=-1, f−′(0)=x→0−limx−0f(x)−f(0)=x→0−limx−0−x−0=−1,
f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 = lim x → 0 + x − 0 x − 0 = 1 f'_+(0)=\lim _{x\rightarrow 0^{+}}\frac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0^{+}}\frac{x-0}{x-0}=1 f+′(0)=x→0+limx−0f(x)−f(0)=x→0+limx−0x−0=1
例5 求 f ( x ) = { 1 − cos x , x ≥ 0 x , x < 0 f(x) = \begin{cases}1 - \cos x, & x \geq 0 \\ x, & x < 0\end{cases} f(x)={1−cosx,x,x≥0x<0 在 x = 0 x = 0 x=0 处的左右导数
解:
f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x − 0 = lim x → 0 − x − 0 x − 0 = 1 , f'_-(0) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{x - 0}{x - 0} = 1, f−′(0)=x→0−limx−0f(x)−f(0)=x→0−limx−0x−0=1,
f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 = lim x → 0 + 1 − cos x − 0 x − 0 = lim x → 0 + x 2 2 ! x = 0 f'_+(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{1 - \cos x - 0}{x - 0} = \lim_{x \to 0^+} \frac{\frac{x^2}{2!}}{x} = 0 f+′(0)=x→0+limx−0f(x)−f(0)=x→0+limx−01−cosx−0=x→0+limx2!x2=0
例6 求 f ( x ) = { x x < 0 ln ( 1 + x ) x ≥ 0 f(x)=\begin{cases}x & x<0 \\ \ln(1+x) & x\geq 0\end{cases} f(x)={xln(1+x)x<0x≥0 在 x = 0 x=0 x=0 处的左右导数
解:
f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x − 0 = lim x → 0 − x − 0 x − 0 = 1 , f'_{-}(0)=\lim _{x\rightarrow 0^{-}}\frac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0^{-}}\frac{x-0}{x-0}=1, f−′(0)=x→0−limx−0f(x)−f(0)=x→0−limx−0x−0=1,
f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 = lim x → 0 + ln ( 1 + x ) − 0 x − 0 = lim x → 0 + ln ( 1 + x ) x = 1 f'_{+}(0)=\lim _{x\rightarrow 0^{+}}\frac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0^{+}}\frac{\ln(1+x)-0}{x-0}=\lim _{x\rightarrow 0^{+}}\frac{\ln(1+x)}{x}=1 f+′(0)=x→0+limx−0f(x)−f(0)=x→0+limx−0ln(1+x)−0=x→0+limxln(1+x)=1
注: f ( x ) f(x) f(x)在 x 0 x_{0} x0处可导 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x)在 x 0 x_{0} x0处左右导数存在且相等
如:例4和例5:在 x = 0 x = 0 x=0处不可导;例6: f ′ ( 0 ) = 1 f'(0)=1 f′(0)=1
3. f ( x ) f(x) f(x) 在 x x x 处的导数(导函数)
lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x \lim _{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} limΔx→0Δxf(x+Δx)−f(x) 称为 f ( x ) f(x) f(x) 在 x x x 的导数(导函数),记作
f ′ ( x ) , y ′ , d y d x , d f d x f^{\prime}(x), y^{\prime},\frac{d y}{dx},\frac{d f}{dx} f′(x),y′,dxdy,dxdf
即
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f^{\prime}(x)=\lim _{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} f′(x)=Δx→0limΔxf(x+Δx)−f(x)
注:
- f ′ ( x 0 ) f'(x_{0}) f′(x0) 与 f ′ ( x ) f'(x) f′(x) 的关系: f ′ ( x 0 ) = f ′ ( x ) ∣ x = x 0 f'(x_{0})=\left.f^{\prime}(x)\right|_{x=x_{0}} f′(x0)=f′(x)∣x=x0
例7 求下列函数的导数
- y = C y = C y=C
- y = x n y = x^{n} y=xn
- y = sin x y = \sin x y=sinx
- y = cos x y = \cos x y=cosx
- y = a x y = a^{x} y=ax
提示:
- sin α − sin β = 2 cos α + β 2 sin α − β 2 , cos α − cos β = − 2 sin α + β 2 sin α − β 2 \sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2},\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} sinα−sinβ=2cos2α+βsin2α−β,cosα−cosβ=−2sin2α+βsin2α−β
- ( x a ) ′ = lim Δ x → 0 ( x + Δ x ) a − x a Δ x = a x a − 1 \left(x^{a}\right)^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{a}-x^{a}}{\Delta x}=a x^{a-1} (xa)′=limΔx→0Δx(x+Δx)a−xa=axa−1
- ( a x ) ′ = a x ln a \left(a^{x}\right)^{\prime}=a^{x} \ln a (ax)′=axlna,特别的 ( e x ) ′ = e x \left(e^{x}\right)^{\prime}=e^{x} (ex)′=ex
二、可导与连续的关系
定理:若函数 f ( x ) f(x) f(x) 在 x 0 x_{0} x0 处可导,则 f ( x ) f(x) f(x) 在 x 0 x_{0} x0 处一定连续。
证明:
可导 ⇒ f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x ⇒ lim Δ x → 0 Δ y = lim Δ x → 0 Δ y Δ x × Δ x = 0 \Rightarrow f^{\prime}(x_{0})=\lim\limits_{\Delta x\rightarrow0}\frac{\Delta y}{\Delta x}\Rightarrow\lim\limits_{\Delta x\rightarrow0}\Delta y=\lim\limits_{\Delta x\rightarrow0}\frac{\Delta y}{\Delta x}\times\Delta x = 0 ⇒f′(x0)=Δx→0limΔxΔy⇒Δx→0limΔy=Δx→0limΔxΔy×Δx=0,即连续。
注:
- 可导必连续,连续不一定可导,如 y = ∣ x ∣ y = |x| y=∣x∣ 在 x = 0 x = 0 x=0 处连续不可导。
- 不连续一定不可导。
例8 讨论 f ( x ) = { x sin 1 x , x ≠ 0 0 , x = 0 f(x)=\left\{\begin{array}{ll}x\sin\frac{1}{x},&x\neq0\\0,&x = 0\end{array}\right. f(x)={xsinx1,0,x=0x=0在 x = 0 x = 0 x=0处的连续性和可导性。
例9 讨论 f ( x ) = { x − 1 , x ≤ 0 2 x , 0 < x ≤ 1 x 2 + 1 , 1 < x ≤ 2 x 2 2 + 4 x , x > 2 f(x)=\left\{\begin{array}{ll}x - 1,&x\leq0\\2x,&0\lt x\leq1\\x^{2}+1,&1\lt x\leq2\\\frac{x^{2}}{2}+4x,&x\gt2\end{array}\right. f(x)=⎩ ⎨ ⎧x−1,2x,x2+1,2x2+4x,x≤00<x≤11<x≤2x>2在 x = 0 , x = 1 , x = 2 x = 0,x = 1,x = 2 x=0,x=1,x=2处的连续性和可导性。
三、导数的几何意义
f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f′(x0) 表示曲线 y = f ( x ) y=f(x) y=f(x) 在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 处的切线斜率,即 k = f ′ ( x 0 ) k=f^{\prime}\left(x_{0}\right) k=f′(x0)。
切线方程为:
y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y - y_0 = f'(x_0)(x - x_0) y−y0=f′(x0)(x−x0)
法线方程为:
y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) y−y0=−f′(x0)1(x−x0)
例10 求曲线 y = 1 x y = \frac{1}{x} y=x1 在点 ( 1 , 1 ) (1, 1) (1,1) 处的切线方程与法线方程。
解:
- 首先求导数:
y ′ = ( 1 x ) ′ = − 1 x 2 y' = \left(\frac{1}{x}\right)' = -\frac{1}{x^2} y′=(x1)′=−x21 - 在 x = 1 x=1 x=1 处的导数为:
f ′ ( 1 ) = − 1 f'(1) = -1 f′(1)=−1 - 切线方程:
y − 1 = − 1 ( x − 1 ) ⇒ y = − x + 2 y - 1 = -1(x - 1) \Rightarrow y = -x + 2 y−1=−1(x−1)⇒y=−x+2 - 法线方程(斜率为负倒数):
y − 1 = 1 ( x − 1 ) ⇒ y = x y - 1 = 1(x - 1) \Rightarrow y = x y−1=1(x−1)⇒y=x
作业
-
设 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处可导,求
lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 − Δ x ) Δ x \lim_{\Delta x \to 0}\frac{f(x_0 + \Delta x)-f(x_0 - \Delta x)}{\Delta x} Δx→0limΔxf(x0+Δx)−f(x0−Δx) -
设
f ( x ) = { 2 3 x 3 x ≤ 1 x 2 x > 1 f(x)=\begin{cases} \frac{2}{3}x^{3} & x\leq1 \\ x^{2} & x > 1 \end{cases} f(x)={32x3x2x≤1x>1
讨论 f − ′ ( 1 ) , f + ′ ( 1 ) , f ′ ( 1 ) f'_{-}(1),f'_{+}(1),f'(1) f−′(1),f+′(1),f′(1) 是否存在。 -
求下列函数的导数
- (1) y = 1 x 2 y = \frac{1}{x^{2}} y=x21
- (2) y = x 4 x y=\frac{x^{4}}{\sqrt{x}} y=xx4
- (3) y = x 3 ⋅ x 5 y = x^{3}\cdot\sqrt[5]{x} y=x3⋅5x
-
讨论函数
f ( x ) = { x sin 1 x , x e q 0 0 , x = 0 f(x)=\begin{cases} x\sin\frac{1}{x}, & x eq0 \\ 0, & x = 0 \end{cases} f(x)={xsinx1,0,xeq0x=0
在 x = 0 x = 0 x=0 处的连续性和可导性。 -
设
f ( x ) = { x 2 , x ⩽ 1 a x + b , x > 1 f(x)=\begin{cases} x^{2}, & x\leqslant1 \\ ax + b, & x>1 \end{cases} f(x)={x2,ax+b,x⩽1x>1
若 f ( x ) f(x) f(x) 在 x = 1 x = 1 x=1 处既连续又可导,求 a , b a,b a,b 的值。 -
求曲线 y = x 2 3 y=\sqrt[3]{x^{2}} y=3x2 上点 ( 1 , 1 ) (1,1) (1,1) 处的切线方程和法线方程。
§2.3 函数的求导法则
一、求导法则
1. 四则法则
定理1 设 u ( x ) , v ( x ) u(x),v(x) u(x),v(x) 在 x x x 处可导,则它们的和、差、积、商在 x x x 处都可导,且:
-
加法法则
( u ( x ) + v ( x ) ) ′ = u ′ ( x ) + v ′ ( x ) (u(x)+v(x))^\prime = u^\prime(x) + v^\prime(x) (u(x)+v(x))′=u′(x)+v′(x) -
减法法则
( u ( x ) − v ( x ) ) ′ = u ′ ( x ) − v ′ ( x ) (u(x)-v(x))^\prime = u^\prime(x) - v^\prime(x) (u(x)−v(x))′=u′(x)−v′(x) -
乘法法则
( u ( x ) ⋅ v ( x ) ) ′ = u ′ ( x ) ⋅ v ( x ) + u ( x ) ⋅ v ′ ( x ) (u(x)\cdot v(x))^\prime = u^\prime(x)\cdot v(x) + u(x)\cdot v^\prime(x) (u(x)⋅v(x))′=u′(x)⋅v(x)+u(x)⋅v′(x) -
除法法则
( u ( x ) v ( x ) ) ′ = u ′ ( x ) ⋅ v ( x ) − u ( x ) ⋅ v ′ ( x ) v 2 ( x ) \left(\frac{u(x)}{v(x)}\right)^\prime = \frac{u^\prime(x)\cdot v(x) - u(x)\cdot v^\prime(x)}{v^2(x)} (v(x)u(x))′=v2(x)u′(x)⋅v(x)−u(x)⋅v′(x)
证明(以加法和乘法为例):
-
加法法则:
( u ( x ) + v ( x ) ) ′ = lim Δ x → 0 ( u ( x + Δ x ) + v ( x + Δ x ) ) − ( u ( x ) + v ( x ) ) Δ x = u ′ ( x ) + v ′ ( x ) (u(x)+v(x))' = \lim_{\Delta x \to 0} \frac{(u(x+\Delta x)+v(x+\Delta x)) - (u(x)+v(x))}{\Delta x} = u'(x) + v'(x) (u(x)+v(x))′=Δx→0limΔx(u(x+Δx)+v(x+Δx))−(u(x)+v(x))=u′(x)+v′(x) -
乘法法则:
( u ( x ) ⋅ v ( x ) ) ′ = lim Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x (u(x)\cdot v(x))' = \lim_{\Delta x \to 0} \frac{u(x+\Delta x)v(x+\Delta x) - u(x)v(x)}{\Delta x} (u(x)⋅v(x))′=Δx→0limΔxu(x+Δx)v(x+Δx)−u(x)v(x)
= lim Δ x → 0 [ u ( x + Δ x ) − u ( x ) Δ x v ( x + Δ x ) + u ( x ) v ( x + Δ x ) − v ( x ) Δ x ] = \lim_{\Delta x \to 0} \left[ \frac{u(x+\Delta x)-u(x)}{\Delta x}v(x+\Delta x) + u(x)\frac{v(x+\Delta x)-v(x)}{\Delta x} \right] =Δx→0lim[Δxu(x+Δx)−u(x)v(x+Δx)+u(x)Δxv(x+Δx)−v(x)]
= u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) = u'(x)v(x) + u(x)v'(x) =u′(x)v(x)+u(x)v′(x)
注:
-
求导公式,加法减法法则(1)(2)可推广至有限个函数:
( u 1 ( x ) ± u 2 ( x ) ± ⋯ ± u n ( x ) ) ′ = u 1 ′ ( x ) ± u 2 ′ ( x ) ± ⋯ ± u n ′ ( x ) (u_1(x) \pm u_2(x) \pm \cdots \pm u_n(x))' = u_1'(x) \pm u_2'(x) \pm \cdots \pm u_n'(x) (u1(x)±u2(x)±⋯±un(x))′=u1′(x)±u2′(x)±⋯±un′(x) -
求导公式乘法法则(3)推广到三个函数乘积的导数:
( u v w ) ′ = u ′ v w + u v ′ w + u v w ′ (uvw)' = u'vw + uv'w + uvw' (uvw)′=u′vw+uv′w+uvw′ -
常数倍法则:
( C u ( x ) ) ′ = C u ′ ( x ) ( C 为常数 ) (Cu(x))' = Cu'(x) \quad (C为常数) (Cu(x))′=Cu′(x)(C为常数)
例1 求下列函数的导数:
- y = 2 x 3 − 5 x 2 + 3 x − 7 y = 2x^3 - 5x^2 + 3x - 7 y=2x3−5x2+3x−7
- y = e x ( sin x + cos x ) y = e^x(\sin x + \cos x) y=ex(sinx+cosx)
- y = x 4 3 − 4 x 3 y = \frac{x^4}{3} - \frac{4}{x^3} y=3x4−x34
- y = x 2 − 1 x 2 + 1 y = \frac{x^2 - 1}{x^2 + 1} y=x2+1x2−1
- y = tan x y = \tan x y=tanx
- y = cot x y = \cot x y=cotx
- y = sec x y = \sec x y=secx
- y = csc x y = \csc x y=cscx
2. 反函数的求导法则
定理2 设 y = f ( x ) y = f(x) y=f(x) 在区间 I x I_x Ix 上单调可导,且 f ′ ( x ) ≠ 0 f'(x) \neq 0 f′(x)=0,则其反函数 x = f − 1 ( y ) x = f^{-1}(y) x=f−1(y) 在对应区间 I y I_y Iy 上也可导,且:
( f − 1 ( y ) ) ′ = 1 f ′ ( x ) (f^{-1}(y))' = \frac{1}{f'(x)} (f−1(y))′=f′(x)1
证明:
对函数 x = f − 1 ( y ) x = f^{-1}(y) x=f−1(y),设 Δ x = f − 1 ( y + Δ y ) − f − 1 ( y ) \Delta x = f^{-1}(y+\Delta y) - f^{-1}(y) Δx=f−1(y+Δy)−f−1(y),当 Δ y ≠ 0 \Delta y \neq 0 Δy=0 时, Δ x ≠ 0 \Delta x \neq 0 Δx=0(否则与单射性矛盾)。于是:
Δ x Δ y = 1 Δ y Δ x ⟹ lim Δ y → 0 Δ x Δ y = lim Δ x → 0 1 Δ y Δ x = 1 f ′ ( x ) \frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta x}} \implies \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta x \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{f'(x)} ΔyΔx=ΔxΔy1⟹Δy→0limΔyΔx=Δx→0limΔxΔy1=f′(x)1
例2 求下列反三角函数的导数:
- y = arcsin x y = \arcsin x y=arcsinx
- y = arccos x y = \arccos x y=arccosx
- y = arctan x y = \arctan x y=arctanx
- y = arccot x y = \text{arccot } x y=arccot x
例3 求对数函数的导数:
- y = log a x y = \log_a x y=logax
3. 复合函数求导法则
定理3 设 y = f [ φ ( x ) ] y = f[\varphi(x)] y=f[φ(x)],若 u = φ ( x ) u = \varphi(x) u=φ(x) 在 x x x 处可导, y = f ( u ) y = f(u) y=f(u) 在 u u u 处可导,则复合函数 y = f [ φ ( x ) ] y = f[\varphi(x)] y=f[φ(x)] 在 x x x 处可导,且:
d y d x = f ′ ( u ) ⋅ φ ′ ( x ) \frac{dy}{dx} = f'(u) \cdot \varphi'(x) dxdy=f′(u)⋅φ′(x)
证明:
设自变量有改变量 Δ x \Delta x Δx,则:
Δ u = φ ( x + Δ x ) − φ ( x ) , Δ y = f ( u + Δ u ) − f ( u ) \Delta u = \varphi(x+\Delta x) - \varphi(x), \quad \Delta y = f(u+\Delta u) - f(u) Δu=φ(x+Δx)−φ(x),Δy=f(u+Δu)−f(u)
由导数定义:
Δ y Δ x = Δ y Δ u ⋅ Δ u Δ x \frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} ΔxΔy=ΔuΔy⋅ΔxΔu
两边取极限:
lim Δ x → 0 Δ y Δ x = lim Δ u → 0 Δ y Δ u ⋅ lim Δ x → 0 Δ u Δ x = f ′ ( u ) ⋅ φ ′ ( x ) \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = f'(u) \cdot \varphi'(x) Δx→0limΔxΔy=Δu→0limΔuΔy⋅Δx→0limΔxΔu=f′(u)⋅φ′(x)
注:复合函数求导法则可推广至有限次复合,如:
y = f [ g [ φ ( x ) ] ] ⟹ d y d x = f ′ ( u ) ⋅ g ′ ( v ) ⋅ φ ′ ( x ) y = f[g[\varphi(x)]] \implies \frac{dy}{dx} = f'(u) \cdot g'(v) \cdot \varphi'(x) y=f[g[φ(x)]]⟹dxdy=f′(u)⋅g′(v)⋅φ′(x)
例4 求下列复合函数的导数:
- y = ( 1 + 2 x ) 30 y = (1+2x)^{30} y=(1+2x)30
- y = ln ( sin x ) y = \ln(\sin x) y=ln(sinx)
- y = e − x y = e^{-x} y=e−x
- y = ( x 2 x + 1 ) n y = \left(\frac{x}{2x+1}\right)^n y=(2x+1x)n
- y = ln ( x − x 2 + a 2 ) y = \ln(x - \sqrt{x^2 + a^2}) y=ln(x−x2+a2)
- y = x 2 a 2 − x 2 y = \frac{x}{2} \sqrt{a^2 - x^2} y=2xa2−x2
- y = e 1 + cos x y = e^{\sqrt{1+\cos x}} y=e1+cosx
4. 取对数求导法则
适用类型:
- 幂指函数 y = f ( x ) g ( x ) y = f(x)^{g(x)} y=f(x)g(x)
- 形如 y = a x + b c x + d n y = \sqrt[n]{\frac{ax + b}{cx + d}} y=ncx+dax+b 的函数
求导步骤:
3. 等式两边取对数
4. 等式两边对 x x x 求导
5. 解出 y ′ y' y′
例6 求下列函数的导数:
6. y = x x y = x^x y=xx
7. y = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} y=(x−3)(x−4)(x−1)(x−2)
5. 隐函数求导法则
定义:由方程 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0 确定的函数 y = f ( x ) y = f(x) y=f(x) 称为隐函数。
求导法则:
对方程 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0 两边关于 x x x 求导,将 y y y 视为 x x x 的函数,解出 y ′ y' y′。
例5 求下列隐函数的导数:
- y 2 = 2 p x y^2 = 2px y2=2px
- y = x ln y y = x \ln y y=xlny
- y 5 + 2 y − x − 3 x 7 = 0 y^5 + 2y - x - 3x^7 = 0 y5+2y−x−3x7=0,求 y ′ ∣ x = 0 \left.y'\right|_{x=0} y′∣x=0
- x 2 + x y + y 2 = 4 x^2 + xy + y^2 = 4 x2+xy+y2=4,求过点 (2,-2) 的切线方程
6. 参数方程确定函数的求导法则
(1) 参数方程确定的函数
参数方程 { x = φ ( t ) y = ψ ( t ) \begin{cases}x = \varphi(t)\\y = \psi(t)\end{cases} {x=φ(t)y=ψ(t) 消参 ⇒ y = f ( x ) \Rightarrow y = f(x) ⇒y=f(x)
(2) 参数方程确定函数的求导法则
参数方程通过消参求函数 y = f ( x ) y = f(x) y=f(x)不是很容易的事,下面建立一般的求导法则,并给出求导公式。
将 x = φ ( t ) x=\varphi(t) x=φ(t)的反函数 t = φ − 1 ( x ) t = \varphi^{-1}(x) t=φ−1(x)代入 y = ψ ( t ) y=\psi(t) y=ψ(t)得复合函数 y = ψ ( φ − 1 ( x ) ) y=\psi(\varphi^{-1}(x)) y=ψ(φ−1(x)),由复合函数求导法则和反函数求导法则得
d y d x = ψ ′ ( t ) × ( φ − 1 ( x ) ) ′ = ψ ′ ( t ) × 1 φ ′ ( t ) = ψ ′ ( t ) φ ′ ( t ) \frac{dy}{dx}=\psi^{\prime}(t)\times(\varphi^{-1}(x))^{\prime}=\psi^{\prime}(t)\times\frac{1}{\varphi^{\prime}(t)}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)} dxdy=ψ′(t)×(φ−1(x))′=ψ′(t)×φ′(t)1=φ′(t)ψ′(t)
例7 求下列参数方程的导数:
- { x = a cos t y = a sin t \begin{cases} x = a\cos t \\ y = a\sin t \end{cases} {x=acosty=asint
- { x = arctan t y = ln ( 1 + t 2 ) \begin{cases} x = \arctan t \\ y = \ln(1+t^2) \end{cases} {x=arctanty=ln(1+t2)
二、综合杂例
例1 分段函数求导:
f ( x ) = { x − 1 x ≤ 0 2 x 0 < x ≤ 1 x 2 + 1 1 < x ≤ 2 x 2 + 4 x > 2 f(x) = \begin{cases} x-1 & x \leq 0 \\ 2x & 0 < x \leq 1 \\ x^2 + 1 & 1 < x \leq 2 \\ \frac{x}{2} + 4 & x > 2 \end{cases} f(x)=⎩ ⎨ ⎧x−12xx2+12x+4x≤00<x≤11<x≤2x>2
求 f ′ ( x ) f'(x) f′(x)
例2 求导:
y = 3 x + x 3 + x x + 3 3 y = 3^x + x^3 + x^x + 3^3 y=3x+x3+xx+33
例3 已知 y = e f 2 ( x ) y = e^{f^2(x)} y=ef2(x),若 f ′ ( a ) = 1 2 f ( a ) f'(a) = \frac{1}{2f(a)} f′(a)=2f(a)1,证明 y ( a ) = y ′ ( a ) y(a) = y'(a) y(a)=y′(a)
例4 求参数 a , b a,b a,b:
f ( x ) = { x 2 − 1 x ≤ 1 a x + b x > 1 f(x) = \begin{cases} x^2 - 1 & x \leq 1 \\ ax + b & x > 1 \end{cases} f(x)={x2−1ax+bx≤1x>1
在 x = 1 x=1 x=1 处可导
例5 已知 f ′ ( − 1 ) = 3 f'(-1) = 3 f′(−1)=3,求:
lim h → 0 f ( − 1 − 2 h ) − f ( − 1 ) h \lim_{h \to 0} \frac{f(-1-2h) - f(-1)}{h} h→0limhf(−1−2h)−f(−1)
作业
1.基本求导练习
1. 求下列函数的导数
- y = 3 x 2 − x + 5 y = 3x^2 - x + 5 y=3x2−x+5
- y = 1 − x 3 x y = \frac{1-x^3}{\sqrt{x}} y=x1−x3
- y = x ln x y = x\ln x y=xlnx
- y = 5 x 1 + x 2 y = \frac{5x}{1+x^2} y=1+x25x
2. 求下列函数在给定点的导数
- y = θ sin θ + 1 2 cos θ y = \theta \sin \theta + \frac{1}{2}\cos \theta y=θsinθ+21cosθ,求 d y d θ ∣ θ = π 4 \left.\frac{dy}{d\theta}\right|_{\theta=\frac{\pi}{4}} dθdy θ=4π
- f ( x ) = 3 5 − x + x 2 5 f(x) = \frac{3}{5-x} + \frac{x^2}{5} f(x)=5−x3+5x2,求 f ′ ( 0 ) f'(0) f′(0)
3. 求下列函数的导数
- y = ( 1 + x 2 ) 5 y = (1+x^2)^5 y=(1+x2)5
- y = a 2 − x 2 y = \sqrt{a^2 - x^2} y=a2−x2
- y = arctan ( 1 + x 2 ) y = \arctan(1+x^2) y=arctan(1+x2)
- y = sin n x y = \sin nx y=sinnx
- y = cos 3 x 2 y = \cos^3\frac{x}{2} y=cos32x
- y = ln tan x 3 y = \ln\tan\frac{x}{3} y=lntan3x
- y = arccos 1 x y = \arccos\frac{1}{x} y=arccosx1
- y = lg ( x − x 2 − a 2 ) y = \lg(x - \sqrt{x^2 - a^2}) y=lg(x−x2−a2)
- y = e − 3 x 2 y = e^{-3x^2} y=e−3x2
- y = ( arcsin x 2 ) 2 y = (\arcsin\frac{x}{2})^2 y=(arcsin2x)2
2.进阶求导练习
4. 求下列函数的导数
- y = x 1 − x 1 + x y = x\sqrt{\frac{1-x}{1+x}} y=x1+x1−x
- y = ( sin x ) tan x y = (\sin x)^{\tan x} y=(sinx)tanx
5. 求下列方程所确定隐函数的导数 d y d x \frac{dy}{dx} dxdy
- x 2 + y 2 − x y = 1 x^2 + y^2 - xy = 1 x2+y2−xy=1
- y = x + ln y y = x + \ln y y=x+lny
- arcsin y = e x + y \arcsin y = e^{x+y} arcsiny=ex+y
6. 求曲线 y 3 + y 2 = 2 x y^3 + y^2 = 2x y3+y2=2x 在 (1,1) 处的切线方程与法线方程
7. 求下列参数方程所确定函数的导数
- { x = 2 t − t 2 y = 3 t − t 3 \begin{cases} x = 2t - t^2 \\ y = 3t - t^3 \end{cases} {x=2t−t2y=3t−t3,求 d y d x \frac{dy}{dx} dxdy
- { x = θ ( 1 − sin θ ) y = θ cos θ \begin{cases} x = \theta(1-\sin\theta) \\ y = \theta\cos\theta \end{cases} {x=θ(1−sinθ)y=θcosθ,求 d y d x \frac{dy}{dx} dxdy
8. 讨论函数 f ( x ) f(x) f(x) 在 x = 0 x=0 x=0 处的性质
f ( x ) = { x + 1 x < 0 k 2 x = 0 k x e x + 1 x > 0 f(x) = \begin{cases} x+1 & x < 0 \\ k^2 & x = 0 \\ kxe^x + 1 & x > 0 \end{cases} f(x)=⎩ ⎨ ⎧x+1k2kxex+1x<0x=0x>0
(1) k k k 为何值时 f ( x ) f(x) f(x) 有极限;
(2) k k k 为何值时 f ( x ) f(x) f(x) 连续;
(3) k k k 为何值时 f ( x ) f(x) f(x) 可导。
9. 求 f ( x ) = ∣ x 2 − 1 ∣ f(x) = |x^2 - 1| f(x)=∣x2−1∣ 的导数
10. 证明:
- 可导的偶函数的导数为奇函数;
- 可导的奇函数的导数是偶函数。