AlexNet网络搭建
AlexNet网络模型搭建
环境准备
首先在某个盘符下创建一个文件夹,就叫AlexNet吧,用来存放源代码。
然后新建一个python文件,就叫plot.py
吧,往里面写入以下代码,用于下载数据集:
# FashionMNIST里面包含了许多数据集
from click.core import batch
from spacy.cli.train import train
from torchvision.datasets import FashionMNIST
from torchvision import transforms # 处理数据集,归一化
import torch.utils.data as Data
import numpy as np
import matplotlib.pyplot as plt# 下载FashionMMIST数据集
train_data = FashionMNIST(root="./data", # 指定数据集要下载的路径train=True,# 要训练集# 将数据进行归一化操作transform=transforms.Compose([transforms.Resize(size=224), # 调整数据的大小transforms.ToTensor() # 将数据转换为tensor]),download=True # 开启下载
)# 加载数据集集
train_loader = Data.DataLoader(dataset=train_data,# 要加载的数据集batch_size=64 ,# 批量数据大小shuffle=True, # 打乱数据顺序num_workers=0, # 加载数据线程数量
)# 绘制出训练集
for step,(b_x,b_y) in enumerate(train_loader):if step > 0:breakbatch_x = b_x.squeeze().numpy() # 将四维张量移除第一维,将数据转换为numpy格式batch_y = b_y.numpy() # 将张量数据转成numpy格式class_label = train_data.classes # 训练集标签
print("class_label,",class_label)# 绘图
plt.figure(figsize=(12,5))
for ii in np.arange(len(batch_y)):plt.subplot(4,16,ii+1)plt.imshow(batch_x[ii, : , :],cmap=plt.cm.gray)plt.title(class_label[batch_y[ii]],size=10)plt.axis('off')plt.subplots_adjust(wspace=0.05)plt.show()
执行上述代码后,就会开始下载所需要的数据集文件,只不过下载的速度比较慢,然后下载完成,项目的根目录会多出data文件夹,以下是data的目录结构:
--data--FashionMNIST--raw # 该文件夹下就存放数据集文件
搭建网络模型
创建model.py
文件,用于构建模型代码。
import torch
from torch import nn # nn层
from torchsummary import summary # 查看网络模型参数
import torch.nn.functional as F # 用于dropout# 搭建模型
class AlexNet(nn.Module):def __init__(self):# 初始化网络层super(AlexNet, self).__init__()self.ReLU = nn.ReLU() # ReLU 激活函数# kernel_size=11 : 卷积核大小 11*11self.c1 = nn.Conv2d(in_channels=1, out_channels=96, kernel_size=11, stride=4) # 第一层:卷积self.s2 = nn.MaxPool2d(kernel_size=3, stride=2) # 第二层:最大池化层self.c3 = nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, padding=2) # 第三层:卷积层self.s4 = nn.MaxPool2d(kernel_size=3, stride=2) # 第四层:最大池化层self.c5 = nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, padding=1) # 第五层:卷积层self.c6 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, padding=1) # 第六层:卷积层self.c7 = nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, padding=1) # 第七层:卷积层self.s8 = nn.MaxPool2d(kernel_size=3, stride=2) # 第八层:最大池化层self.flatten = nn.Flatten() # 第九层:平展层self.f1 = nn.Linear(6 * 6 * 256, 4096) # 第十层:全连接层self.f2 = nn.Linear(4096, 4096) # 第十一层:全连接层self.f3 = nn.Linear(4096, 10) # 第十二层:全连接层# 前向传播def forward(self, x):# 卷积完后,然后进行激活函数x = self.ReLU(self.c1(x))x = self.s2(x)x = self.ReLU(self.c3(x))x = self.s4(x)x = self.ReLU(self.c5(x))x = self.ReLU(self.c6(x))x = self.ReLU(self.c7(x))x = self.s8(x)x = self.flatten(x) # 平展层x = self.ReLU(self.f1(x)) # 线性全连接层x = F.dropout(x, 0.5)x = self.ReLU(self.f2(x))x = F.dropout(x, 0.5)x = self.f3(x) # 输出层return x# 测试模型的搭建有没有成功(仅测试)
if __name__ == "__main__":device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = AlexNet().to(device)print(summary(model, (1, 227, 227)))
模型训练
创建一个model_train.py
文件
import copy
import timeimport torch
from torchvision.datasets import FashionMNIST
from torchvision import transforms
import torch.nn as nn
import torch.utils.data as Data
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltfrom model import AlexNet# 处理训练集核数据集
def train_val_data_process():# 加载数据集train_data = FashionMNIST(root="./data",# 数据集所在路径train=True, # 要训练集# 将数据进行归一化操作transform=transforms.Compose([transforms.Resize(size=227), # 修改数据的大小transforms.ToTensor() # 将数据转成Tensor格式]),download=True # 开启加载)# 随机 划分训练集 和 验证集train_data,val_data = Data.random_split(train_data, # 要划分的数据集[round(0.8*len(train_data)), # 划分80%给训练集round(0.2*len(train_data)) # 划分20%给验证集])# 加载训练集数据train_dataloader = Data.DataLoader(dataset=train_data,# 要加载的训练集batch_size=32,# 每轮的训练批次数shuffle=True,# 打乱数据顺序num_workers=2,# 加载数据线程数量)# 加载验证集数据val_dataloader = Data.DataLoader(dataset=val_data,# 要加载的验证集batch_size=32,# 每轮的训练批数shuffle=True,# 打乱数据顺序num_workers=2,# 加载数据集的线程数量)return train_dataloader,val_dataloader# 模型训练
def train_model_process(model,train_dataloader,val_dataloader,num_epochs):# model:需要训练的模型,train_dataloader:训练集数据,val_dataloader:验证集数据,num_epochs:训练轮数# 指定设备device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 定义优化器optimizer = torch.optim.Adam(model.parameters(),lr=0.001)# 定义交叉熵损失函数criterion = nn.CrossEntropyLoss()# 将模型放入到设备中进行训练model.to(device)# 复制当前模型的参数best_model_wts = copy.deepcopy(model.state_dict())# 初始化参数,记录模型的的精确度和损失值best_acc = 0.0 # 最高精确度train_loss_all = [] # 训练集的总损失train_acc_all = [] # 训练集的总精度val_loss_all = [] # 验证集的总损失val_acc_all = [] # 验证集的总精度since = time.time() # 记录开始训练的时间# 开始训练模型 每轮参数for epoch in range(num_epochs):print("Epoch {}/{}".format(epoch,num_epochs-1))print("-"*10)# 初始化参数,记录本轮的模型的损失之和精度train_loss = 0.0 # 训练的损失train_corrects = 0 # 训练的准确度val_loss = 0.0 # 验证集的损失val_corrents = 0 # 验证集的准确度train_num = 0 # 本轮训练集的数量val_num = 0 # 本轮验证集的数量# 取出每轮中的数据集进行训练for step,(b_x,b_y) in enumerate(train_dataloader):b_x = b_x.to(device) # 将训练集数据放入到设备当中b_y = b_y.to(device) # 将标签数据放入到设备当中model.train() # 开启模型训练模式# 将每批次中的标签数据放入到模型中,进行前向传播output = model(b_x)# 查找每一行中最大值对应的行标,即预测值pre_lab = torch.argmax(output,dim=1)# 计算当前批次的损失值(模型的输出,标签)loss = criterion(output,b_y)# 每批次训练完后,将梯度初始化成0optimizer.zero_grad()# 反向传播计算loss.backward()# 更新参数optimizer.step()# 本批次损失值的累加train_loss += loss.item() * b_x.size(0)# 如果模型预测的结果正确,本批次的准确度+1train_corrects += torch.sum(pre_lab == b_y.data)# 本此次的训练数据累加train_num += b_y.size(0)# 取出每轮中的数据进行验证for step,(b_x,b_y) in enumerate(val_dataloader):# 将数据和标签分别放入到设备中b_x = b_x.to(device)b_y = b_y.to(device)model.eval() # 设置模型为评估模式# 前向传播,输入一个批次,输出该批次的对应的预测值output = model(b_x)# 查找每一行中最大值对应的行标,即预测值pre_lab = torch.argmax(output,dim=1)# 计算本此次的损失函数loss = criterion(output,b_y)# 本批次的损失函数累加val_loss += loss.item() * b_x.size(0)# 如果预测正确,那就本批次的精度度累加val_corrents += torch.sum(pre_lab==b_y.data)# 当前用于验证的样本数累加val_num += b_x.size(0)# 计算每轮次的损失值和准确率train_loss_all.append(train_loss / train_num) # 本轮训练集的loss值train_acc_all.append(train_corrects.double().item() / train_num) # 本轮训练集的准确率val_loss_all.append(val_loss / val_num) # 本轮验证集的loss值val_acc_all.append(val_corrents.double().item() / val_num) # 本轮验证集的准确率print("{} train loss:{:.4f} train acc: {:.4f}".format(epoch, train_loss_all[-1], train_acc_all[-1]))print("{} val loss:{:.4f} val acc: {:.4f}".format(epoch, val_loss_all[-1], val_acc_all[-1]))# 寻找最高准确度 和 模型的权重参数if val_acc_all[-1] > best_acc:best_acc = val_acc_all[-1] # 最高准确度best_model_wts = copy.deepcopy(model.state_dict()) # 最佳模型参数# 计算训练耗时time_use = time.time() - sinceprint("训练耗费的时间:{:.0f}m{:.0f}s".format(time_use//60,time_use%60))# 将最佳的模型参数保存torch.save(best_model_wts,"best_model.pth") # .pth是权重文件的后缀# 保存训练好的模型参数train_process = pd.DataFrame(data={"epoch":range(num_epochs),"train_loss_all":train_loss_all,"train_acc_all":train_acc_all,"val_loss_all":val_loss_all,"val_acc_all":val_acc_all})return train_process# 定义绘图的函数,绘制loss和准确度
def matplot_acc_loss(train_process):plt.figure(figsize=(12,4))# 绘制训练集和验证集的损失值图像plt.subplot(1,2,1) # 一行两列,第一列plt.plot(train_process['epoch'],train_process.train_loss_all,"ro-",label="train loss")plt.plot(train_process['epoch'],train_process.val_acc_all,"bs-",label="val loss")plt.legend() # 图例plt.xlabel("epoch") # x轴标签plt.ylabel("loss") # y轴标签# 绘制训练集和验证集的准确度图像plt.subplot(1,2,2) # 一行两列,第二列plt.plot(train_process['epoch'],train_process.val_loss_all,"ro-",label="train acc")plt.plot(train_process['epoch'],train_process.val_acc_all,"bs-",label="va acc")if __name__ == '__main__':# 实例化自定义模型类model = AlexNet()# 加载数据集train_dataloader,val_dataloader = train_val_data_process()# 训练模型train_process = train_model_process(model,train_dataloader,val_dataloader,20)# 绘制图像matplot_acc_loss(train_process)
模型测试
创建一个model_test.py
文件,用于模型的测试
import torch
import torch.utils.data as Data
from numpy.random import shuffle
from torchvision import transforms
from torchvision.datasets import FashionMNISTfrom model import AlexNet# 加载要训练的数据
def test_data_process():# 加载测试集数据test_data = FashionMNIST(root="./data",# 指定数据集要下载的路径train=False,# 不要训练集数据# 数据归一化操作transform=transforms.Compose([transforms.Resize(size=227), # 将数据转成227*227大小transforms.ToTensor(),# 将数据转成Tensor格式]),download=True # 加载数据)# 通过DataLoader加载器 来加载数据test_dataloader = Data.DataLoader(dataset=test_data,# 要加载的数据batch_size=1, # 每轮训练的批次数shuffle=True, # 打乱数据集num_workers=0, # 加载数据集的线程数量)return test_dataloader# 测试模型
def test_model_process(model,test_dataloader):# 指定设备device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 将模型放入设备中model.to(device)# 初始化模型训练的每轮参数test_correct = 0.0 # 准确度test_num = 0 # 测试样本数量# 只进行前向传播with torch.no_grad(): # 将梯度设置为0for test_data_x,test_data_y in enumerate(test_dataloader): # 遍历每轮次# 由于上面设置批次为1,所以这里就不需要循环批次了test_data_x = test_data_x.to(device) # 将测试数据放入到设备中test_data_y = test_data_y.to(device) # 将标签数据放入到设备中# 模型切换成评估模式model.eval()# 前向传播 将测试数据放入到模型中output = model(test_data_x)# 查找每一行中最大值的行标pre_lab = torch.argmax(output,dim=1)# 模型预测的结果 将pre_lab 与 标签数据 进行比较# 如果预测正确,则加1test_correct += torch.sum(pre_lab==test_data_y.data)# 测试样本数量累加test_num += test_data_y.size(0)# 计算最终测试的准确率 每轮的准确度 / 总样本数量test_acc = test_correct.double().item() / test_numprint("测试模型的准确率为:",test_acc)if __name__ == '__main__':# 加载模型model = AlexNet()# 加载训练好的模型最佳参数model.load_state_dict(torch.load('best_model.pth'))# 加载测试的数据集test_dataloader = test_data_process()# 开始训练# test_model_process(model, test_dataloader)# 模型具体的训练过程device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 将模型放入到设备当中model = model.to(device)# 数据的类别classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot')# 梯度设置为0with torch.no_grad():# 遍历测试集中的 测试数据 和 标签for b_x,b_y in test_dataloader:# 将模型设置为评估模式model.eval()# 将数据放入到模型中,得出预测结果output = model(b_x)# 获取最大值的行标pre_lab = torch.argmax(output,dim=1)# 取出张量中的下标result = pre_lab.item()label = b_y.item()print("预测结果为:",classes[result],"标签为:",classes[label])