当前位置: 首页 > news >正文

打印及判断回文数组、打印N阶数组、蛇形矩阵

打印回文数组

1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1

方法1: 对角线对称

左上和右下是对称的。
所以先考虑左上打印, m i n ( i + 1 , j + 1 ) \text min(i+1,j+1) min(i+1,j+1),打印出来:

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

考虑右下打印 m i n ( n − i , n − j ) \text min(n-i,n-j) min(ni,nj),打印出来如下:

4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

然后两者重合一下,取最小值, m i n ( 左上,右下 ) \text min(左上,右下) min(左上,右下),代码如下

#include <iostream>
#define endl "\n"
using namespace std;
// 对称思想
int main() {int n;while (cin >> n, n) {for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {cout << min(min(i + 1, j + 1), min(n - i, n - j)) << " ";}cout << endl;}cout << endl;}return 0;
}

vector:

#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;int main() {int N;while (cin >> N && N != 0) {vector<vector<int>> matrix(N, vector<int>(N));for (int i = 0; i < N; ++i) {for (int j = 0; j < N; ++j) {int min_val = min({i, N - 1 - i, j, N - 1 - j});matrix[i][j] = min_val + 1;}}for (int i = 0; i < N; ++i) {for (int j = 0; j < N; ++j) {if (j != 0) {cout << " ";}cout << matrix[i][j];}cout << endl;}cout << endl;}return 0;
}

方法2 :中心点出发

通过计算矩阵中每个位置 ( i , j ) (i, j) (i,j) 到中心点的距离,来确定该位置的值。奇数的时候,中心点在两个像素之间,所以用浮点数来确定中心点位置。

#include <cmath>
#include <iostream>
#define endl "\n"
using namespace std;int main() {int n;while (cin >> n, n) {for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {if (n % 2)cout << (n + 1) / 2 - max(abs(n / 2 - i), abs(n / 2 - j)) << " ";elsecout << (n + 1) / 2.0 -max(abs((n - 1) / 2.0 - i), abs((n - 1) / 2.0 - j))<< " ";}cout << endl;}cout << endl;}return 0;
}

判断回文数组 / 字符串

方法 1:对称

通过比较数组两端的元素,逐步向中心移动,利用对称性来判断是否为回文数组。如果两端元素相等,则继续向中心移动;否则,返回 false

时间复杂度为 O ( n ) O(n) O(n),其中 n n n 是数组的长度。

#include <iostream>
#include <vector>
using namespace std;bool isPalindrome(const vector<int>& arr) {int left = 0, right = arr.size() - 1;while (left < right) {if (arr[left] != arr[right]) {return false;}left++;right--;}return true;
}int main() {vector<int> arr = {1, 2, 3, 2, 1};if (isPalindrome(arr)) {cout << "yes" << endl;} else {cout << "no" << endl;}return 0;
}

方法 2:反转

将数组反转后与原数组进行比较,如果相等,则为回文数组。

需要额外的空间来存储反转后的数组,空间复杂度为 O ( n ) O(n) O(n)

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;bool isPalindromeReverse(const vector<int>& arr) {vector<int> reversed = arr;reverse(reversed.begin(), reversed.end());return arr == reversed;
}int main() {vector<int> arr = {1, 2, 3, 2, 1};if (isPalindromeReverse(arr)) {cout << "yes" << endl;} else {cout << "no" << endl;}return 0;
}

方法 3:字符串

和方法二差不多的意思。

#include <iostream>
#include <vector>
#include <string>
using namespace std;bool isPalindromeString(const vector<int>& arr) {string str;for (int num : arr) {str += to_string(num);}string reversed = str;reverse(reversed.begin(), reversed.end());return str == reversed;
}int main() {vector<int> arr = {1, 2, 3, 2, 1};if (isPalindromeString(arr)) {cout << "yes" << endl;} else {cout << "no" << endl;}return 0;
}

打印N阶数组

数组长这个样子:

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1

方法1:对角线

打印最外围,里面的每个元素 a [ i ] [ j ] = a [ i − 1 ] [ j − 1 ] a[i][j] = a[i-1][j-1] a[i][j]=a[i1][j1],可以自己画个图理解一下。

#include <iostream>
#define endl "\n"
using namespace std;
const int N = 10010;
int a[N][N];int main() {int n;while (cin >> n, n) {// 打印最外围的12345(行和列)for (int i = 0; i < n; i++) {a[i][0] = i + 1;a[0][i] = i + 1;}for (int i = 1; i < n; i++) {for (int j = 1; j < n; j++) {a[i][j] = a[i - 1][j - 1];}}for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {cout << a[i][j] << " ";}cout << endl;}cout << endl;}return 0;
}

方法2:规律

#include <algorithm>
#include <iostream>
#define endl "\n"
using namespace std;
int n;
int main() {while (cin >> n) {for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {cout << abs(i - j) + 1 << " ";}cout << endl;}if (n) cout << endl;}return 0;
}

打印蛇形矩阵

方法1:填充

#include <iostream>
#include <vector>
using namespace std;void print(int m, int n) {vector<vector<int>> matrix(m, vector<int>(n, 0));int num = 1;int top = 0, bottom = m - 1, left = 0, right = n - 1;while (num <= m * n) {// 左右for (int i = left; i <= right && num <= m * n; ++i) {matrix[top][i] = num++;}top++;// 上下for (int i = top; i <= bottom && num <= m * n; ++i) {matrix[i][right] = num++;}right--;// 右左if (top <= bottom) {for (int i = right; i >= left && num <= m * n; --i) {matrix[bottom][i] = num++;}bottom--;}// 下上if (left <= right) {for (int i = bottom; i >= top && num <= m * n; --i) {matrix[i][left] = num++;}left++;}}// 打印矩阵for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {cout << matrix[i][j] << " ";}cout << endl;}
}int main() {int m, n;cin >> m >> n;print(m, n);return 0;
}

方法 2 :偏移量

#include <iostream>
using namespace std;
int res[10010][10010];
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, 1, 0, -1};int main() {int n, m;cin >> n >> m;int x = 0, y = 0, d = 1;for (int i = 1; i <= n * m; i++) {res[x][y] = i;int a = x + dx[d];int b = y + dy[d];if (a < 0 || a >= n || b < 0 || b >= m || res[a][b]) {d = (d + 1) % 4;  // 1是右 2是下 3是上 4是左a = x + dx[d], b = y + dy[d];}x = a, y = b;}for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {cout << res[i][j] << " ";}cout << endl;}return 0;
}

相关文章:

  • 高炉项目中DeviceNET到Ethernet的转换奥秘
  • 基于STM32、HAL库的DS2401P安全验证及加密芯片驱动程序设计
  • mysql community 8.0.23升级到8.0.42再到8.4.5
  • 风力发电领域canopen转Profinet网关的应用
  • terraform local-exec与remote-exec详解
  • [OS] POSIX C库介绍
  • Java后端接口调用拦截处理:注解与拦截器的实现
  • 【线性规划】对偶问题的实际意义与重要性质 学习笔记
  • 大数据应用开发与实战(1)
  • 模板--进阶
  • 民办生从零学C的第十二天:指针(1)
  • 辛格迪客户案例 | 华道生物细胞治疗生产及追溯项目(CGTS)
  • Qt内置图标速查表
  • 编译原理:由浅入深从语法树到文法类型
  • TMI投稿指南(三):共同作者
  • Unity-粒子系统:萤火虫粒子特效效果及参数
  • GPU虚拟化实现(四)
  • [实战] IRIG-B协议详解及Verilog实现(完整代码)
  • 【重走C++学习之路】22、C++11语法
  • vim粘贴代码格式错乱 排版错乱 缩进错乱 解决方案
  • 中国人保聘任田耕为副总裁,此前为工行浙江省分行行长
  • 当AI开始深度思考,人类如何守住自己的慢思考能力?
  • 修订占比近30%收录25万条目,第三版《英汉大词典》来了
  • 马上评丨学生举报食堂饭菜有蛆,教育局应该护谁的犊子
  • 体坛联播|利物浦提前4轮夺冠,安切洛蒂已向皇马更衣室告别
  • 《沙尘暴》:用贴近生活的影像和表演拍摄悬疑剧