当前位置: 首页 > news >正文

第R3周:RNN-心脏病预测

文章目录

  • 一、前期准备工作
    • 1. 设置硬件设备
    • 2. 导入数据
  • 二、 构建数据集
    • 1. 标准化
    • 2. 划分数据集
    • 3. 构建数据加载器
  • 三、 模型训练
    • 1. 构建模型
    • 2. 定义训练函数
    • 3.定义测试函数
    • 4. 正式训练模型
  • 四、模型评估
    • 1. Loss与Accuracy图
    • 2. 混淆矩阵
    • 3. 调用模型进行预测
  • 五、总结

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

一、前期准备工作

1. 设置硬件设备

import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as snsdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type=‘cpu’)

2. 导入数据

df = pd.read_csv("heart.csv")df
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
063131452331015002.30011
137121302500118703.50021
241011302040017201.42021
356111202360117800.82021
457001203540116310.62021
.............................................
29857001402410112310.21030
29945131102640113201.21030
30068101441931114103.41230
30157101301310111511.21130
30257011302360017400.01120

303 rows × 14 columns

二、 构建数据集

1. 标准化

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_splitX = df.iloc[:,: -1]
y = df.iloc[:, -1]# Standardize the data
sc = StandardScaler()
X = sc.fit_transform(X)

2. 划分数据集

X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,random_state=1)X_train.shape, y_train.shape

(torch.Size([272, 13]), torch.Size([272]))

3. 构建数据加载器

from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(X_train, y_train),batch_size = 64, shuffle = False)test_dl = DataLoader(TensorDataset(X_test, y_test),batch_size = 64,shuffle = False)

三、 模型训练

1. 构建模型

class model_rnn(nn.Module):def __init__(self):super(model_rnn, self).__init__()self.rnn0 = nn.RNN(input_size=13, hidden_size=200,num_layers=1, batch_first=True)self.fc0 = nn.Linear(200, 50)self.fc1 = nn.Linear(50, 2)def forward(self, x):out, hidden1 = self.rnn0(x)out = self.fc0(out)out = self.fc1(out)return outmodel = model_rnn().to(device)
model

model_rnn(
(rnn0): RNN(13, 200, batch_first=True)
(fc0): Linear(in_features=200, out_features=50, bias=True)
(fc1): Linear(in_features=50, out_features=2, bias=True)
)

model(torch.rand(30,13).to(device)).shape

torch.Size([30, 2])

2. 定义训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)num_batches = len(dataloader)train_loss, train_acc = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)optimizer.zero_grad()loss.backward()optimizer.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3.定义测试函数

def test (dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_loss, test_acc = 0, 0with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)target_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4. 正式训练模型

loss_fn = nn.CrossEntropyLoss()
learn_rate = 1e-4
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)
epochs = 50train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc) test_loss.append(epoch_test_loss)lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))print("=" * 20, 'Done', "=" * 20)

Epoch: 1, Train_acc:41.9%, Train_loss:0.699, Test_acc:61.3%, Test_loss:0.679, Lr:1.00E-04
==================== Done ====================
Epoch: 2, Train_acc:48.9%, Train_loss:0.685, Test_acc:67.7%, Test_loss:0.664, Lr:1.00E-04
==================== Done ====================
Epoch: 3, Train_acc:59.6%, Train_loss:0.673, Test_acc:67.7%, Test_loss:0.649, Lr:1.00E-04
==================== Done ====================
Epoch: 4, Train_acc:69.5%, Train_loss:0.661, Test_acc:83.9%, Test_loss:0.635, Lr:1.00E-04
==================== Done ====================
Epoch: 5, Train_acc:74.6%, Train_loss:0.649, Test_acc:83.9%, Test_loss:0.622, Lr:1.00E-04
==================== Done ====================
Epoch: 6, Train_acc:77.6%, Train_loss:0.637, Test_acc:87.1%, Test_loss:0.608, Lr:1.00E-04
==================== Done ====================
Epoch: 7, Train_acc:80.1%, Train_loss:0.625, Test_acc:87.1%, Test_loss:0.595, Lr:1.00E-04
==================== Done ====================
Epoch: 8, Train_acc:81.6%, Train_loss:0.613, Test_acc:83.9%, Test_loss:0.581, Lr:1.00E-04
==================== Done ====================
Epoch: 9, Train_acc:81.6%, Train_loss:0.600, Test_acc:83.9%, Test_loss:0.568, Lr:1.00E-04
==================== Done ====================
Epoch:10, Train_acc:81.6%, Train_loss:0.588, Test_acc:83.9%, Test_loss:0.555, Lr:1.00E-04
==================== Done ====================
Epoch:11, Train_acc:82.4%, Train_loss:0.575, Test_acc:83.9%, Test_loss:0.542, Lr:1.00E-04
==================== Done ====================
Epoch:12, Train_acc:83.1%, Train_loss:0.561, Test_acc:83.9%, Test_loss:0.529, Lr:1.00E-04
==================== Done ====================
Epoch:13, Train_acc:83.5%, Train_loss:0.548, Test_acc:83.9%, Test_loss:0.517, Lr:1.00E-04
==================== Done ====================
Epoch:14, Train_acc:83.8%, Train_loss:0.534, Test_acc:83.9%, Test_loss:0.506, Lr:1.00E-04
==================== Done ====================
Epoch:15, Train_acc:83.5%, Train_loss:0.520, Test_acc:83.9%, Test_loss:0.495, Lr:1.00E-04
==================== Done ====================
Epoch:16, Train_acc:83.5%, Train_loss:0.505, Test_acc:83.9%, Test_loss:0.486, Lr:1.00E-04
==================== Done ====================
Epoch:17, Train_acc:83.5%, Train_loss:0.491, Test_acc:83.9%, Test_loss:0.478, Lr:1.00E-04
==================== Done ====================
Epoch:18, Train_acc:83.8%, Train_loss:0.477, Test_acc:83.9%, Test_loss:0.471, Lr:1.00E-04
==================== Done ====================
Epoch:19, Train_acc:83.5%, Train_loss:0.463, Test_acc:83.9%, Test_loss:0.465, Lr:1.00E-04
==================== Done ====================
Epoch:20, Train_acc:83.1%, Train_loss:0.450, Test_acc:80.6%, Test_loss:0.459, Lr:1.00E-04
==================== Done ====================
Epoch:21, Train_acc:83.5%, Train_loss:0.437, Test_acc:80.6%, Test_loss:0.454, Lr:1.00E-04
==================== Done ====================
Epoch:22, Train_acc:83.8%, Train_loss:0.424, Test_acc:80.6%, Test_loss:0.449, Lr:1.00E-04
==================== Done ====================
Epoch:23, Train_acc:84.2%, Train_loss:0.412, Test_acc:80.6%, Test_loss:0.442, Lr:1.00E-04
==================== Done ====================
Epoch:24, Train_acc:84.2%, Train_loss:0.399, Test_acc:83.9%, Test_loss:0.434, Lr:1.00E-04
==================== Done ====================
Epoch:25, Train_acc:84.2%, Train_loss:0.387, Test_acc:87.1%, Test_loss:0.426, Lr:1.00E-04
==================== Done ====================
Epoch:26, Train_acc:84.6%, Train_loss:0.376, Test_acc:87.1%, Test_loss:0.419, Lr:1.00E-04
==================== Done ====================
Epoch:27, Train_acc:85.3%, Train_loss:0.365, Test_acc:87.1%, Test_loss:0.412, Lr:1.00E-04
==================== Done ====================
Epoch:28, Train_acc:86.0%, Train_loss:0.354, Test_acc:87.1%, Test_loss:0.406, Lr:1.00E-04
==================== Done ====================
Epoch:29, Train_acc:85.3%, Train_loss:0.343, Test_acc:87.1%, Test_loss:0.401, Lr:1.00E-04
==================== Done ====================
Epoch:30, Train_acc:87.1%, Train_loss:0.333, Test_acc:87.1%, Test_loss:0.397, Lr:1.00E-04
==================== Done ====================
Epoch:31, Train_acc:87.5%, Train_loss:0.324, Test_acc:87.1%, Test_loss:0.394, Lr:1.00E-04
==================== Done ====================
Epoch:32, Train_acc:88.2%, Train_loss:0.314, Test_acc:87.1%, Test_loss:0.390, Lr:1.00E-04
==================== Done ====================
Epoch:33, Train_acc:88.2%, Train_loss:0.306, Test_acc:87.1%, Test_loss:0.388, Lr:1.00E-04
==================== Done ====================
Epoch:34, Train_acc:88.6%, Train_loss:0.297, Test_acc:87.1%, Test_loss:0.386, Lr:1.00E-04
==================== Done ====================
Epoch:35, Train_acc:89.0%, Train_loss:0.289, Test_acc:87.1%, Test_loss:0.384, Lr:1.00E-04
==================== Done ====================
Epoch:36, Train_acc:88.6%, Train_loss:0.282, Test_acc:87.1%, Test_loss:0.384, Lr:1.00E-04
==================== Done ====================
Epoch:37, Train_acc:89.0%, Train_loss:0.274, Test_acc:83.9%, Test_loss:0.384, Lr:1.00E-04
==================== Done ====================
Epoch:38, Train_acc:89.3%, Train_loss:0.267, Test_acc:80.6%, Test_loss:0.385, Lr:1.00E-04
==================== Done ====================
Epoch:39, Train_acc:89.3%, Train_loss:0.261, Test_acc:80.6%, Test_loss:0.386, Lr:1.00E-04
==================== Done ====================
Epoch:40, Train_acc:90.1%, Train_loss:0.254, Test_acc:80.6%, Test_loss:0.389, Lr:1.00E-04
==================== Done ====================
Epoch:41, Train_acc:90.1%, Train_loss:0.247, Test_acc:80.6%, Test_loss:0.392, Lr:1.00E-04
==================== Done ====================
Epoch:42, Train_acc:90.1%, Train_loss:0.240, Test_acc:80.6%, Test_loss:0.396, Lr:1.00E-04
==================== Done ====================
Epoch:43, Train_acc:90.1%, Train_loss:0.234, Test_acc:77.4%, Test_loss:0.400, Lr:1.00E-04
==================== Done ====================
Epoch:44, Train_acc:90.4%, Train_loss:0.227, Test_acc:77.4%, Test_loss:0.404, Lr:1.00E-04
==================== Done ====================
Epoch:45, Train_acc:91.9%, Train_loss:0.221, Test_acc:77.4%, Test_loss:0.409, Lr:1.00E-04
==================== Done ====================
Epoch:46, Train_acc:93.4%, Train_loss:0.214, Test_acc:77.4%, Test_loss:0.414, Lr:1.00E-04
==================== Done ====================
Epoch:47, Train_acc:93.4%, Train_loss:0.208, Test_acc:77.4%, Test_loss:0.418, Lr:1.00E-04
==================== Done ====================
Epoch:48, Train_acc:93.8%, Train_loss:0.202, Test_acc:77.4%, Test_loss:0.422, Lr:1.00E-04
==================== Done ====================
Epoch:49, Train_acc:93.8%, Train_loss:0.197, Test_acc:77.4%, Test_loss:0.426, Lr:1.00E-04
==================== Done ====================
Epoch:50, Train_acc:94.5%, Train_loss:0.191, Test_acc:77.4%, Test_loss:0.429, Lr:1.00E-04
==================== Done ====================

四、模型评估

1. Loss与Accuracy图

import matplotlib.pyplot as plt
from datetime import datetime
#隐藏警告
import warnings
warnings.filterwarnings("ignore")        #忽略警告信息current_time = datetime.now() # 获取当前时间plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 200        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2. 混淆矩阵

print("==============输入数据Shape为==============")
print("X_test.shape:",X_test.shape)
print("y_test.shape:",y_test.shape)pred = model(X_test.to(device)).argmax(1).cpu().numpy()print("\n==============输出数据Shape为==============")
print("pred.shape:",pred.shape)

输入数据Shape为
X_test.shape: torch.Size([31, 13])
y_test.shape: torch.Size([31])

输出数据Shape为
pred.shape: (31,)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay# 计算混淆矩阵
cm = confusion_matrix(y_test, pred)plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")# 修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Confusion Matrix", fontsize=12)
plt.xlabel("Predicted Label", fontsize=10)
plt.ylabel("True Label", fontsize=10)# 显示图
plt.tight_layout()  # 调整布局防止重叠
plt.show()

在这里插入图片描述

3. 调用模型进行预测

test_X = X_test[0].reshape(1, -1) # X_test[0]即我们的输入数据pred = model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:",pred)
print("=="*20)
print("0:不会患心脏病")
print("1:可能患心脏病")

模型预测结果为: 0
========================================
0:不会患心脏病
1:可能患心脏病

五、总结

本周主要学习了LSTM和RNN,通过实践项目更加深入地了解了RNN模型的结构。

相关文章:

  • 【硬件系统架构】冯·诺依曼架构
  • flutter app实现分辨率自适应的图片资源加载
  • 实时直播弹幕系统设计
  • AI Agent系列(十) -Data Agent(数据分析智能体)开源资源汇总
  • LabVIEW技巧——获取文件版本信息
  • Flutter异常Couldn‘t find dynamic library in default locations
  • 深入解析 HTML5 Web IndexedDB 数据库:构建高效离线应用的基石
  • Ubuntu22.04安装QT、px4安装环境
  • Git 进阶之路:高效协作之分支管理
  • DeepSeek 操作 MySQL 数据库:使用 MCP 实现数据库查询
  • 【MySQL】Ubuntu下C++连接MySQL
  • AWS上构建基于自然语言的数值和符号计算系统
  • (51单片机)LCD显示数据存储(DS1302时钟模块教学)(LCD1602教程)(独立按键教程)(延时函数教程)(I2C总线认识)(AT24C02认识)
  • Redis——网络模型之IO讲解
  • 系统架构设计师:流水线技术相关知识点、记忆卡片、多同类型练习题、答案与解析
  • 数据库原理及应用mysql版陈业斌实验四
  • 高级java每日一道面试题-2025年4月14日-微服务篇[Nacos篇]-Nacos是如何实现对多数据中心的支持的?
  • 解决Windows安全中心显示空白页面
  • PHP8.2.9NTS版本使用composer报错,扩展找不到的问题处理
  • <C#>.NET WebAPI 的 FromBody ,FromForm ,FromServices等详细解释
  • 从中央政治局会议看经济工作着力点:以高质量发展的确定性应对外部不确定性
  • 精准滴灌“种企业”,苏南强县常熟新的进阶密码
  • 中国平安一季度净赚270亿降逾26%,营运利润增2.4%
  • 印媒称印巴在克什米尔控制线沿线发生小规模交火,巴方暂未回应
  • 中共中央政治局召开会议,分析研究当前经济形势和经济工作,中共中央总书记习近平主持会议
  • 国家市场监管总局:组织销毁侵权假冒服装、食药等3300吨