当前位置: 首页 > news >正文

深度学习基础--CNN经典网络之InceptionV3详解与复现(pytorch)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前言

  • InceptionV3是InceptionV1的升级版,虽然加大了计算量,但是当时效果是比VGG效果要好的。
  • 本次任务是探究InceptionV3结构并进行复现实验;
  • 欢迎收藏 + 关注,本人将会持续更新

文章目录

  • 1、模型简介
    • 1、模型特点
    • 2、模型结构简介
  • 2、模型复现
      • 准备工作
      • 1、InceptionA
      • 2、InceptionB
      • 3、InceptionC
      • 4、ReductionA
      • 5、ReductionB
      • 6、辅助分支
      • 7、模型搭建
      • 8、查看模型详情
  • 3、参考资料

1、模型简介

1、模型特点

InceptionV3是谷歌在2015年提出,是InceptionV1的进阶版,对于Inception系列网络来说,他是当时第一个在100层卷积网络却依然可以取得好效果的网络(ResNet还没有提出来),相比于InceptionV1来说,他主要特点是:

  • 更深入得网络结构,在InceptionV3中,包含了48层卷积网络,这可以提取出更多特征,从而获得更好成果;
  • 使用分解卷积,将较大的卷积核分解为多个较小的卷积核,在保持良好性能的情况下,依然降低了网络参数量,减少计算复杂度;
  • 使用BN层,InceptionV3中每个卷积层后都添加了BN层,使数据符合高斯分布,这样有助于缓解网络梯度消失和梯度爆炸的效果,同时也有助网络于收敛和提高泛化能力;
  • 辅助分类器,在InceptionV3中提出来辅助分类器结构模块,主要用于缓解深层网络训练中梯度消失问题,加快模型收敛,辅助分类器结构:平均池化层 + 全连接层 + Softmax激活函数组成;
  • 基于RMSPeop优化器代替SGD方法,可以使用模型更快收敛。

📚 分解卷积

InceptionV3网络结构中,采用空间可分离卷积结构,这里简介该结构。


👁 在介绍该结构前,先学习一下深度卷积(DW)

  • 与常规卷积相比,深度卷积一个卷积核负责一个通道,一个通道只被一个卷积核卷,在常规卷积中是同时操作图片的每个通道。
  • 举例:对于一张3通道一条图片,在深度卷积首先经过第一次卷积运算,和常规卷积相比,深度卷积完全是在二维平面内进行。卷积核个数和通道数一一对应,如图所示:
  • 在这里插入图片描述
  • 而对于常规卷积中,以三通道数为例(参考某一个大神的图片):
    -在这里插入图片描述

从上图可以看出,他是在多维平面内进行卷积操作,且一个卷积核同时进行多个通道卷积,然后再生产特征。


👀 现在介绍深度可分离卷积,分为两步:深度卷积 + 逐点卷积

以输入 12 * 12 * 3图像,5 * 5 卷积核为例:

1️⃣ 第一步:深度卷积

在这里插入图片描述

通过上面学习可以发现,这里就是使用3个 5 * 5 * 1的卷积核分别提取3个特征,每个卷积核计算完都会得到一个 8 * 8 * 1 的输出特征,然后将3个堆积在一起,就得出了 8 * 8 * 3 大小的最终输出特征图。

发现:DW卷积缺少特征之间的融合,解决这个问题就是用到了下面介绍的逐点卷积;

2️⃣ 第二步:逐点卷积

逐点卷积就是用1 * 1的卷积核去遍历每一个点;在第一步中,我们得到了 8 * 8 * 3 尺寸的特征图,这里我们采用一个3通道的1 * 1卷积(1 * 1 * 3)对该特征图进行计算,去融合3个通道间的特征功能,如图:

在这里插入图片描述

最后就得到了 8 * 8 * 1的输出图,如果这个时候使用256个 1 * 1 * 3的卷积对该特征图进行卷积,得到结果如图:

在这里插入图片描述


2、模型结构简介

先回忆一下InceptionV1的核心网络结构:

在这里插入图片描述

将 5 * 5 的卷积结构分解成两个3 * 3的卷积运算以提高速度(通过计算发现两个3 * 3卷积结构的计算量远小于一个5 * 5的计算量):

在这里插入图片描述

作者将n * n 的卷积核分解为 1 * n 和 n * 1的两个卷积核,如:一个3 * 3的卷积核=先执行一个1 * 3的卷积核在执行一个3 * 1的卷积,作者发现这种方法比单使用3 * 3卷积降低 33% 成本,如图:

在这里插入图片描述

作者还在InceptionV1核心结构中进行了横向扩展,解决性能瓶颈问题(训练神经网络很多时候会遇到精度上不去的现象),这一模块主要进行宽度扩展,如图:

在这里插入图片描述

最后通过模块搭建,InceptionV1结构如下

在这里插入图片描述

2、模型复现

准备工作

import torch  
import torch.nn as nn 
import torch.nn.functional as F # 封装 Conv2d + BN + ReLU
class BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, **kwargs):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)self.bn = nn.BatchNorm2d(out_channels, eps=0.001)def forward(self, x):x = self.conv(x)x = self.bn(x)return F.relu(x, inplace=True)

1、InceptionA

在这里插入图片描述

# 这一部分对于InceptionV1核心部分来说,没什么变化,不同的是 3 * 3变成了两个
class InceptionA(nn.Module):def __init__(self, in_channels, pool_features):super(InceptionA, self).__init__()# 1 * 1卷积, BasicConv2d是封装好的卷积Conv2d + BN + ReLUself.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1)# 1 * 1 + 5 * 5self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)# 1 * 1 + 3 * 3 + 3 * 3self.branch3x3_1 = BasicConv2d(in_channels, 64, kernel_size=1)self.branch3x3_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)self.branch3x3_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)# 池化self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch5x5 = self.branch5x5_1(x)branch5x5 = self.branch5x5_2(branch5x5)branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch3x3 = self.branch3x3_3(branch3x3)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)out = [branch1x1, branch5x5, branch3x3, branch_pool]# 拼接, 通道拼接return torch.cat(out, dim=1)

2、InceptionB

在这里插入图片描述

# 这个模块将 3 * 3,,5 * 5变成(1 * n,n * 1)/ (n * 1 + 1 * n)结构
class InceptionB(nn.Module):def __init__(self, in_channels, channels_7x7):super(InceptionB, self).__init__()self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)c7 = channels_7x7# 1 * 1 + 7 * 1 + 1 * 7self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))# 1 * 1 + (7 * 1 + 1 * 7) * 2self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch7x7 = self.branch7x7_1(x)branch7x7 = self.branch7x7_2(branch7x7)branch7x7 = self.branch7x7_3(branch7x7)branch7x7dbl = self.branch7x7dbl_1(x)branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]return torch.cat(outputs, 1)

3、InceptionC

在这里插入图片描述

# 这个部分采用横向扩展,主要用与处理性能瓶颈
class InceptionC(nn.Module):def __init__(self, in_channels):super(InceptionC, self).__init__()# 1 * 1self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)# 1 * 1 + 1 * 3 + 3 * 1self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))# 1 * 1 + 3 * 3 + 3 * 1 + 3 * 1self.branch3x3b1_1 = BasicConv2d(in_channels, 448, kernel_size=1)self.branch3x3b1_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)self.branch3x3b1_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))self.branch3x3b1_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch3x3 = self.branch3x3_1(x)branch3x3 = [self.branch3x3_2a(branch3x3),self.branch3x3_2b(branch3x3),]branch3x3 = torch.cat(branch3x3, dim=1) # 拼接branch3x3b1 = self.branch3x3b1_1(x)branch3x3b1 = self.branch3x3b1_2(branch3x3b1)branch3x3b1 = [self.branch3x3b1_3a(branch3x3b1),self.branch3x3b1_3b(branch3x3b1)]branch3x3b1 = torch.cat(branch3x3b1, dim=1)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)out = [branch1x1, branch3x3, branch3x3b1, branch_pool]return torch.cat(out, dim=1)

4、ReductionA

在这里插入图片描述

从总体模块可以看出,这个位置在于连接InceptionA/B/C模块后,主要用于特征提取后降维操作,总体模型结构如下:
在这里插入图片描述

class ReductionA(nn.Module):def __init__(self, in_channels):super(ReductionA, self).__init__()# 3 * 3self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)# 1 * 1 + 3 * 3 + 3 * 3self.branch3x3db1_1 = BasicConv2d(in_channels, 64, kernel_size=1)self.branch3x3db1_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)self.branch3x3db1_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)def forward(self, x):branch3x3 = self.branch3x3(x)branch3x3db1 = self.branch3x3db1_1(x)branch3x3db1 = self.branch3x3db1_2(branch3x3db1)branch3x3db1 = self.branch3x3db1_3(branch3x3db1)# 这里采用最大池化branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)out = [branch3x3, branch3x3db1, branch_pool]return torch.cat(out, dim=1)

5、ReductionB

在这里插入图片描述

class ReductionB(nn.Module):def __init__(self, in_channels):super(ReductionB, self).__init__()self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)def forward(self, x):branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch7x7x3 = self.branch7x7x3_1(x)branch7x7x3 = self.branch7x7x3_2(branch7x7x3)branch7x7x3 = self.branch7x7x3_3(branch7x7x3)branch7x7x3 = self.branch7x7x3_4(branch7x7x3)branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)out = [branch3x3, branch7x7x3, branch_pool]return torch.cat(out, dim=1)

6、辅助分支

在这里插入图片描述

# 辅助分类器
class InceptionAux(nn.Module):def __init__(self, in_channels, num_classes):super(InceptionAux, self).__init__()self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1)self.conv1 = BasicConv2d(128, 768, kernel_size=5)self.conv1.stddev = 0.01   # 设置卷积层权重的标准差self.fc = nn.Linear(768, num_classes)self.fc.saddev = 0.001  # 设置全连接层权重的标准差def forward(self, x):# 17 x 17 x 768x = F.avg_pool2d(x, kernel_size=5, stride=5)# 5 x 5 x 768x = self.conv0(x)# 5 x 5 x 128x = self.coinv1(x)# 1 x 1 x 768x = x.view(x.size(0), -1) # 展开# 768x = self.fc(x)return x

7、模型搭建

在这里插入图片描述

class InceptionV3(nn.Module):def __init__(self, num_classes=1000, aux_logits=False, transform_input=False):super(InceptionV3, self).__init__()'''  aux_logits 是否使用辅助分类器transform_input 是否对数据进行转换'''self.aux_logits = aux_logitsself.transform_input = transform_input# 头,输出初处理self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)# InceptionAself.Mixed_5b = InceptionA(192, pool_features=32)self.Mixed_5c = InceptionA(256, pool_features=64)self.Mixed_5d = InceptionA(288, pool_features=64)# 降维,通道增加self.Mixed_6a = ReductionA(288)# InceptionBself.Mixed_6b = InceptionB(768, channels_7x7=128)self.Mixed_6c = InceptionB(768, channels_7x7=160)self.Mixed_6d = InceptionB(768, channels_7x7=160)self.Mixed_6e = InceptionB(768, channels_7x7=192)# 辅助if aux_logits:self.AuxLogits = InceptionAux(768, num_classes)# 降维,通道增加self.Mixed_7a = ReductionB(768)# InceptionCself.Mixed_7b = InceptionC(1280)self.Mixed_7c = InceptionC(2048)self.fc = nn.Linear(2048, num_classes)def forward(self, x):# 数据转换if self.transform_input:  # 对数据进行标准化x = x.clone()x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5# 299 x 299 x 3x = self.Conv2d_1a_3x3(x)# 129 x 149 x 32x = self.Conv2d_2a_3x3(x)# 147 x 147 x 32x = self.Conv2d_2b_3x3(x)# 147 x 147 x 64x = F.max_pool2d(x, kernel_size=3, stride=2)# 73 x 73 x 64x = self.Conv2d_3b_1x1(x)# 73 x 73 x 80x = self.Conv2d_4a_3x3(x)# 71 x 71 x 192         x = F.max_pool2d(x, kernel_size=3, stride=2)   # 35 x 35 x 192         x = self.Mixed_5b(x)       # 35 x 35 x 256        x = self.Mixed_5c(x)         # 35 x 35 x 288         x = self.Mixed_5d(x)         # 35 x 35 x 288         x = self.Mixed_6a(x)         # 17 x 17 x 768         x = self.Mixed_6b(x)     # 17 x 17 x 768        x = self.Mixed_6c(x)         # 17 x 17 x 768         x = self.Mixed_6d(x)         # 17 x 17 x 768         x = self.Mixed_6e(x)        # 17 x 17 x 768         if self.training and self.aux_logits:        # 在训练模型中使用       aux = self.AuxLogits(x)         # 17 x 17 x 768         x = self.Mixed_7a(x)         # 8 x 8 x 1280         x = self.Mixed_7b(x)         # 8 x 8 x 2048         x = self.Mixed_7c(x)         # 8 x 8 x 2048         x = F.avg_pool2d(x, kernel_size=8)         # 1 x 1 x 2048        x = F.dropout(x, training=self.training)         # 1 x 1 x 2048         x = x.view(x.size(0), -1)         # 2048         x = self.fc(x)         # num_classes      if self.training and self.aux_logits:          # 在训练模型中使用return x, auxreturn x
# 测试
device = "cuda" if torch.cuda.is_available() else "cpu"model = InceptionV3().to(device)
model
InceptionV3((Conv2d_1a_3x3): BasicConv2d((conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Conv2d_2a_3x3): BasicConv2d((conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Conv2d_2b_3x3): BasicConv2d((conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Conv2d_3b_1x1): BasicConv2d((conv): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(80, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Conv2d_4a_3x3): BasicConv2d((conv): Conv2d(80, 192, kernel_size=(3, 3), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Mixed_5b): InceptionA((branch1x1): BasicConv2d((conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_1): BasicConv2d((conv): Conv2d(192, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_2): BasicConv2d((conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_1): BasicConv2d((conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2): BasicConv2d((conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_3): BasicConv2d((conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_5c): InceptionA((branch1x1): BasicConv2d((conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_1): BasicConv2d((conv): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_2): BasicConv2d((conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_1): BasicConv2d((conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2): BasicConv2d((conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_3): BasicConv2d((conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_5d): InceptionA((branch1x1): BasicConv2d((conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_1): BasicConv2d((conv): Conv2d(288, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_2): BasicConv2d((conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_1): BasicConv2d((conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2): BasicConv2d((conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_3): BasicConv2d((conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6a): ReductionA((branch3x3): BasicConv2d((conv): Conv2d(288, 384, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3db1_1): BasicConv2d((conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3db1_2): BasicConv2d((conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3db1_3): BasicConv2d((conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6b): InceptionB((branch1x1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_1): BasicConv2d((conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_2): BasicConv2d((conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_3): BasicConv2d((conv): Conv2d(128, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_1): BasicConv2d((conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_2): BasicConv2d((conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_3): BasicConv2d((conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_4): BasicConv2d((conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_5): BasicConv2d((conv): Conv2d(128, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6c): InceptionB((branch1x1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_1): BasicConv2d((conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_2): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_3): BasicConv2d((conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_1): BasicConv2d((conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_2): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_3): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_4): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_5): BasicConv2d((conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6d): InceptionB((branch1x1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_1): BasicConv2d((conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_2): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_3): BasicConv2d((conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_1): BasicConv2d((conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_2): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_3): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_4): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_5): BasicConv2d((conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6e): InceptionB((branch1x1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_2): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_3): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_2): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_3): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_4): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_5): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_7a): ReductionB((branch3x3_1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2): BasicConv2d((conv): Conv2d(192, 320, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7x3_1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7x3_2): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7x3_3): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7x3_4): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_7b): InceptionC((branch1x1): BasicConv2d((conv): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_1): BasicConv2d((conv): Conv2d(1280, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2a): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2b): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3b1_1): BasicConv2d((conv): Conv2d(1280, 448, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3b1_2): BasicConv2d((conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3b1_3a): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3b1_3b): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(1280, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_7c): InceptionC((branch1x1): BasicConv2d((conv): Conv2d(2048, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_1): BasicConv2d((conv): Conv2d(2048, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2a): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2b): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3b1_1): BasicConv2d((conv): Conv2d(2048, 448, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3b1_2): BasicConv2d((conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3b1_3a): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3b1_3b): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(2048, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(fc): Linear(in_features=2048, out_features=1000, bias=True)
)
model(torch.randn(32, 3, 299, 299).to(device)).shape
torch.Size([32, 1000])

8、查看模型详情

import torchsummary as summary summary.summary(model, (3, 299, 299))
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 32, 149, 149]             864BatchNorm2d-2         [-1, 32, 149, 149]              64BasicConv2d-3         [-1, 32, 149, 149]               0Conv2d-4         [-1, 32, 147, 147]           9,216BatchNorm2d-5         [-1, 32, 147, 147]              64BasicConv2d-6         [-1, 32, 147, 147]               0Conv2d-7         [-1, 64, 147, 147]          18,432BatchNorm2d-8         [-1, 64, 147, 147]             128BasicConv2d-9         [-1, 64, 147, 147]               0Conv2d-10           [-1, 80, 73, 73]           5,120BatchNorm2d-11           [-1, 80, 73, 73]             160BasicConv2d-12           [-1, 80, 73, 73]               0Conv2d-13          [-1, 192, 71, 71]         138,240BatchNorm2d-14          [-1, 192, 71, 71]             384BasicConv2d-15          [-1, 192, 71, 71]               0Conv2d-16           [-1, 64, 35, 35]          12,288BatchNorm2d-17           [-1, 64, 35, 35]             128BasicConv2d-18           [-1, 64, 35, 35]               0Conv2d-19           [-1, 48, 35, 35]           9,216BatchNorm2d-20           [-1, 48, 35, 35]              96BasicConv2d-21           [-1, 48, 35, 35]               0Conv2d-22           [-1, 64, 35, 35]          76,800BatchNorm2d-23           [-1, 64, 35, 35]             128BasicConv2d-24           [-1, 64, 35, 35]               0Conv2d-25           [-1, 64, 35, 35]          12,288BatchNorm2d-26           [-1, 64, 35, 35]             128BasicConv2d-27           [-1, 64, 35, 35]               0Conv2d-28           [-1, 96, 35, 35]          55,296BatchNorm2d-29           [-1, 96, 35, 35]             192BasicConv2d-30           [-1, 96, 35, 35]               0Conv2d-31           [-1, 96, 35, 35]          82,944BatchNorm2d-32           [-1, 96, 35, 35]             192BasicConv2d-33           [-1, 96, 35, 35]               0Conv2d-34           [-1, 32, 35, 35]           6,144BatchNorm2d-35           [-1, 32, 35, 35]              64BasicConv2d-36           [-1, 32, 35, 35]               0InceptionA-37          [-1, 256, 35, 35]               0Conv2d-38           [-1, 64, 35, 35]          16,384BatchNorm2d-39           [-1, 64, 35, 35]             128BasicConv2d-40           [-1, 64, 35, 35]               0Conv2d-41           [-1, 48, 35, 35]          12,288BatchNorm2d-42           [-1, 48, 35, 35]              96BasicConv2d-43           [-1, 48, 35, 35]               0Conv2d-44           [-1, 64, 35, 35]          76,800BatchNorm2d-45           [-1, 64, 35, 35]             128BasicConv2d-46           [-1, 64, 35, 35]               0Conv2d-47           [-1, 64, 35, 35]          16,384BatchNorm2d-48           [-1, 64, 35, 35]             128BasicConv2d-49           [-1, 64, 35, 35]               0Conv2d-50           [-1, 96, 35, 35]          55,296BatchNorm2d-51           [-1, 96, 35, 35]             192BasicConv2d-52           [-1, 96, 35, 35]               0Conv2d-53           [-1, 96, 35, 35]          82,944BatchNorm2d-54           [-1, 96, 35, 35]             192BasicConv2d-55           [-1, 96, 35, 35]               0Conv2d-56           [-1, 64, 35, 35]          16,384BatchNorm2d-57           [-1, 64, 35, 35]             128BasicConv2d-58           [-1, 64, 35, 35]               0InceptionA-59          [-1, 288, 35, 35]               0Conv2d-60           [-1, 64, 35, 35]          18,432BatchNorm2d-61           [-1, 64, 35, 35]             128BasicConv2d-62           [-1, 64, 35, 35]               0Conv2d-63           [-1, 48, 35, 35]          13,824BatchNorm2d-64           [-1, 48, 35, 35]              96BasicConv2d-65           [-1, 48, 35, 35]               0Conv2d-66           [-1, 64, 35, 35]          76,800BatchNorm2d-67           [-1, 64, 35, 35]             128BasicConv2d-68           [-1, 64, 35, 35]               0Conv2d-69           [-1, 64, 35, 35]          18,432BatchNorm2d-70           [-1, 64, 35, 35]             128BasicConv2d-71           [-1, 64, 35, 35]               0Conv2d-72           [-1, 96, 35, 35]          55,296BatchNorm2d-73           [-1, 96, 35, 35]             192BasicConv2d-74           [-1, 96, 35, 35]               0Conv2d-75           [-1, 96, 35, 35]          82,944BatchNorm2d-76           [-1, 96, 35, 35]             192BasicConv2d-77           [-1, 96, 35, 35]               0Conv2d-78           [-1, 64, 35, 35]          18,432BatchNorm2d-79           [-1, 64, 35, 35]             128BasicConv2d-80           [-1, 64, 35, 35]               0InceptionA-81          [-1, 288, 35, 35]               0Conv2d-82          [-1, 384, 17, 17]         995,328BatchNorm2d-83          [-1, 384, 17, 17]             768BasicConv2d-84          [-1, 384, 17, 17]               0Conv2d-85           [-1, 64, 35, 35]          18,432BatchNorm2d-86           [-1, 64, 35, 35]             128BasicConv2d-87           [-1, 64, 35, 35]               0Conv2d-88           [-1, 96, 35, 35]          55,296BatchNorm2d-89           [-1, 96, 35, 35]             192BasicConv2d-90           [-1, 96, 35, 35]               0Conv2d-91           [-1, 96, 17, 17]          82,944BatchNorm2d-92           [-1, 96, 17, 17]             192BasicConv2d-93           [-1, 96, 17, 17]               0ReductionA-94          [-1, 768, 17, 17]               0Conv2d-95          [-1, 192, 17, 17]         147,456BatchNorm2d-96          [-1, 192, 17, 17]             384BasicConv2d-97          [-1, 192, 17, 17]               0Conv2d-98          [-1, 128, 17, 17]          98,304BatchNorm2d-99          [-1, 128, 17, 17]             256BasicConv2d-100          [-1, 128, 17, 17]               0Conv2d-101          [-1, 128, 17, 17]         114,688BatchNorm2d-102          [-1, 128, 17, 17]             256BasicConv2d-103          [-1, 128, 17, 17]               0Conv2d-104          [-1, 192, 17, 17]         172,032BatchNorm2d-105          [-1, 192, 17, 17]             384BasicConv2d-106          [-1, 192, 17, 17]               0Conv2d-107          [-1, 128, 17, 17]          98,304BatchNorm2d-108          [-1, 128, 17, 17]             256BasicConv2d-109          [-1, 128, 17, 17]               0Conv2d-110          [-1, 128, 17, 17]         114,688BatchNorm2d-111          [-1, 128, 17, 17]             256BasicConv2d-112          [-1, 128, 17, 17]               0Conv2d-113          [-1, 128, 17, 17]         114,688BatchNorm2d-114          [-1, 128, 17, 17]             256BasicConv2d-115          [-1, 128, 17, 17]               0Conv2d-116          [-1, 128, 17, 17]         114,688BatchNorm2d-117          [-1, 128, 17, 17]             256BasicConv2d-118          [-1, 128, 17, 17]               0Conv2d-119          [-1, 192, 17, 17]         172,032BatchNorm2d-120          [-1, 192, 17, 17]             384BasicConv2d-121          [-1, 192, 17, 17]               0Conv2d-122          [-1, 192, 17, 17]         147,456BatchNorm2d-123          [-1, 192, 17, 17]             384BasicConv2d-124          [-1, 192, 17, 17]               0InceptionB-125          [-1, 768, 17, 17]               0Conv2d-126          [-1, 192, 17, 17]         147,456BatchNorm2d-127          [-1, 192, 17, 17]             384BasicConv2d-128          [-1, 192, 17, 17]               0Conv2d-129          [-1, 160, 17, 17]         122,880BatchNorm2d-130          [-1, 160, 17, 17]             320BasicConv2d-131          [-1, 160, 17, 17]               0Conv2d-132          [-1, 160, 17, 17]         179,200BatchNorm2d-133          [-1, 160, 17, 17]             320BasicConv2d-134          [-1, 160, 17, 17]               0Conv2d-135          [-1, 192, 17, 17]         215,040BatchNorm2d-136          [-1, 192, 17, 17]             384BasicConv2d-137          [-1, 192, 17, 17]               0Conv2d-138          [-1, 160, 17, 17]         122,880BatchNorm2d-139          [-1, 160, 17, 17]             320BasicConv2d-140          [-1, 160, 17, 17]               0Conv2d-141          [-1, 160, 17, 17]         179,200BatchNorm2d-142          [-1, 160, 17, 17]             320BasicConv2d-143          [-1, 160, 17, 17]               0Conv2d-144          [-1, 160, 17, 17]         179,200BatchNorm2d-145          [-1, 160, 17, 17]             320BasicConv2d-146          [-1, 160, 17, 17]               0Conv2d-147          [-1, 160, 17, 17]         179,200BatchNorm2d-148          [-1, 160, 17, 17]             320BasicConv2d-149          [-1, 160, 17, 17]               0Conv2d-150          [-1, 192, 17, 17]         215,040BatchNorm2d-151          [-1, 192, 17, 17]             384BasicConv2d-152          [-1, 192, 17, 17]               0Conv2d-153          [-1, 192, 17, 17]         147,456BatchNorm2d-154          [-1, 192, 17, 17]             384BasicConv2d-155          [-1, 192, 17, 17]               0InceptionB-156          [-1, 768, 17, 17]               0Conv2d-157          [-1, 192, 17, 17]         147,456BatchNorm2d-158          [-1, 192, 17, 17]             384BasicConv2d-159          [-1, 192, 17, 17]               0Conv2d-160          [-1, 160, 17, 17]         122,880BatchNorm2d-161          [-1, 160, 17, 17]             320BasicConv2d-162          [-1, 160, 17, 17]               0Conv2d-163          [-1, 160, 17, 17]         179,200BatchNorm2d-164          [-1, 160, 17, 17]             320BasicConv2d-165          [-1, 160, 17, 17]               0Conv2d-166          [-1, 192, 17, 17]         215,040BatchNorm2d-167          [-1, 192, 17, 17]             384BasicConv2d-168          [-1, 192, 17, 17]               0Conv2d-169          [-1, 160, 17, 17]         122,880BatchNorm2d-170          [-1, 160, 17, 17]             320BasicConv2d-171          [-1, 160, 17, 17]               0Conv2d-172          [-1, 160, 17, 17]         179,200BatchNorm2d-173          [-1, 160, 17, 17]             320BasicConv2d-174          [-1, 160, 17, 17]               0Conv2d-175          [-1, 160, 17, 17]         179,200BatchNorm2d-176          [-1, 160, 17, 17]             320BasicConv2d-177          [-1, 160, 17, 17]               0Conv2d-178          [-1, 160, 17, 17]         179,200BatchNorm2d-179          [-1, 160, 17, 17]             320BasicConv2d-180          [-1, 160, 17, 17]               0Conv2d-181          [-1, 192, 17, 17]         215,040BatchNorm2d-182          [-1, 192, 17, 17]             384BasicConv2d-183          [-1, 192, 17, 17]               0Conv2d-184          [-1, 192, 17, 17]         147,456BatchNorm2d-185          [-1, 192, 17, 17]             384BasicConv2d-186          [-1, 192, 17, 17]               0InceptionB-187          [-1, 768, 17, 17]               0Conv2d-188          [-1, 192, 17, 17]         147,456BatchNorm2d-189          [-1, 192, 17, 17]             384BasicConv2d-190          [-1, 192, 17, 17]               0Conv2d-191          [-1, 192, 17, 17]         147,456BatchNorm2d-192          [-1, 192, 17, 17]             384BasicConv2d-193          [-1, 192, 17, 17]               0Conv2d-194          [-1, 192, 17, 17]         258,048BatchNorm2d-195          [-1, 192, 17, 17]             384BasicConv2d-196          [-1, 192, 17, 17]               0Conv2d-197          [-1, 192, 17, 17]         258,048BatchNorm2d-198          [-1, 192, 17, 17]             384BasicConv2d-199          [-1, 192, 17, 17]               0Conv2d-200          [-1, 192, 17, 17]         147,456BatchNorm2d-201          [-1, 192, 17, 17]             384BasicConv2d-202          [-1, 192, 17, 17]               0Conv2d-203          [-1, 192, 17, 17]         258,048BatchNorm2d-204          [-1, 192, 17, 17]             384BasicConv2d-205          [-1, 192, 17, 17]               0Conv2d-206          [-1, 192, 17, 17]         258,048BatchNorm2d-207          [-1, 192, 17, 17]             384BasicConv2d-208          [-1, 192, 17, 17]               0Conv2d-209          [-1, 192, 17, 17]         258,048BatchNorm2d-210          [-1, 192, 17, 17]             384BasicConv2d-211          [-1, 192, 17, 17]               0Conv2d-212          [-1, 192, 17, 17]         258,048BatchNorm2d-213          [-1, 192, 17, 17]             384BasicConv2d-214          [-1, 192, 17, 17]               0Conv2d-215          [-1, 192, 17, 17]         147,456BatchNorm2d-216          [-1, 192, 17, 17]             384BasicConv2d-217          [-1, 192, 17, 17]               0InceptionB-218          [-1, 768, 17, 17]               0Conv2d-219          [-1, 192, 17, 17]         147,456BatchNorm2d-220          [-1, 192, 17, 17]             384BasicConv2d-221          [-1, 192, 17, 17]               0Conv2d-222            [-1, 320, 8, 8]         552,960BatchNorm2d-223            [-1, 320, 8, 8]             640BasicConv2d-224            [-1, 320, 8, 8]               0Conv2d-225          [-1, 192, 17, 17]         147,456BatchNorm2d-226          [-1, 192, 17, 17]             384BasicConv2d-227          [-1, 192, 17, 17]               0Conv2d-228          [-1, 192, 17, 17]         258,048BatchNorm2d-229          [-1, 192, 17, 17]             384BasicConv2d-230          [-1, 192, 17, 17]               0Conv2d-231          [-1, 192, 17, 17]         258,048BatchNorm2d-232          [-1, 192, 17, 17]             384BasicConv2d-233          [-1, 192, 17, 17]               0Conv2d-234            [-1, 192, 8, 8]         331,776BatchNorm2d-235            [-1, 192, 8, 8]             384BasicConv2d-236            [-1, 192, 8, 8]               0ReductionB-237           [-1, 1280, 8, 8]               0Conv2d-238            [-1, 320, 8, 8]         409,600BatchNorm2d-239            [-1, 320, 8, 8]             640BasicConv2d-240            [-1, 320, 8, 8]               0Conv2d-241            [-1, 384, 8, 8]         491,520BatchNorm2d-242            [-1, 384, 8, 8]             768BasicConv2d-243            [-1, 384, 8, 8]               0Conv2d-244            [-1, 384, 8, 8]         442,368BatchNorm2d-245            [-1, 384, 8, 8]             768BasicConv2d-246            [-1, 384, 8, 8]               0Conv2d-247            [-1, 384, 8, 8]         442,368BatchNorm2d-248            [-1, 384, 8, 8]             768BasicConv2d-249            [-1, 384, 8, 8]               0Conv2d-250            [-1, 448, 8, 8]         573,440BatchNorm2d-251            [-1, 448, 8, 8]             896BasicConv2d-252            [-1, 448, 8, 8]               0Conv2d-253            [-1, 384, 8, 8]       1,548,288BatchNorm2d-254            [-1, 384, 8, 8]             768BasicConv2d-255            [-1, 384, 8, 8]               0Conv2d-256            [-1, 384, 8, 8]         442,368BatchNorm2d-257            [-1, 384, 8, 8]             768BasicConv2d-258            [-1, 384, 8, 8]               0Conv2d-259            [-1, 384, 8, 8]         442,368BatchNorm2d-260            [-1, 384, 8, 8]             768BasicConv2d-261            [-1, 384, 8, 8]               0Conv2d-262            [-1, 192, 8, 8]         245,760BatchNorm2d-263            [-1, 192, 8, 8]             384BasicConv2d-264            [-1, 192, 8, 8]               0InceptionC-265           [-1, 2048, 8, 8]               0Conv2d-266            [-1, 320, 8, 8]         655,360BatchNorm2d-267            [-1, 320, 8, 8]             640BasicConv2d-268            [-1, 320, 8, 8]               0Conv2d-269            [-1, 384, 8, 8]         786,432BatchNorm2d-270            [-1, 384, 8, 8]             768BasicConv2d-271            [-1, 384, 8, 8]               0Conv2d-272            [-1, 384, 8, 8]         442,368BatchNorm2d-273            [-1, 384, 8, 8]             768BasicConv2d-274            [-1, 384, 8, 8]               0Conv2d-275            [-1, 384, 8, 8]         442,368BatchNorm2d-276            [-1, 384, 8, 8]             768BasicConv2d-277            [-1, 384, 8, 8]               0Conv2d-278            [-1, 448, 8, 8]         917,504BatchNorm2d-279            [-1, 448, 8, 8]             896BasicConv2d-280            [-1, 448, 8, 8]               0Conv2d-281            [-1, 384, 8, 8]       1,548,288BatchNorm2d-282            [-1, 384, 8, 8]             768BasicConv2d-283            [-1, 384, 8, 8]               0Conv2d-284            [-1, 384, 8, 8]         442,368BatchNorm2d-285            [-1, 384, 8, 8]             768BasicConv2d-286            [-1, 384, 8, 8]               0Conv2d-287            [-1, 384, 8, 8]         442,368BatchNorm2d-288            [-1, 384, 8, 8]             768BasicConv2d-289            [-1, 384, 8, 8]               0Conv2d-290            [-1, 192, 8, 8]         393,216BatchNorm2d-291            [-1, 192, 8, 8]             384BasicConv2d-292            [-1, 192, 8, 8]               0InceptionC-293           [-1, 2048, 8, 8]               0Linear-294                 [-1, 1000]       2,049,000
================================================================
Total params: 23,834,568
Trainable params: 23,834,568
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 1.02
Forward/backward pass size (MB): 224.12
Params size (MB): 90.92
Estimated Total Size (MB): 316.07
----------------------------------------------------------------

3、参考资料

如何理解卷积神经网络中的通道(channel)_神经网络通道数-CSDN博客

相关文章:

  • leetcode 309. Best Time to Buy and Sell Stock with Cooldown
  • VSCODE插值表达式失效问题
  • 在ubuntu中VsCode使用python docker容器
  • 「数据可视化 D3系列」入门第八章:动画效果详解(让图表动起来)
  • 探索Spring Boot Web模块:设计思想与技术实现
  • 【字节跳动AI论文】海姆达尔:生成验证的测试时间扩展
  • 企业数字化转型:如何制定清晰的战略?
  • 2025大模型推理框架选型全指南:高并发推理架构深度拆解
  • vs2019配置点云库PCL1.12.1
  • 【数据结构_10】二叉树(2)
  • 【Reading Notes】(8.3)Favorite Articles from 2025 March
  • 苹果紧急修复两个已被利用的iOS漏洞,用于针对特定目标的复杂攻击
  • 闲来无事,用HTML+CSS+JS打造一个84键机械键盘模拟器
  • OBS 日期时间.毫秒时间脚本 date-and-time.lua
  • 《软件设计师》复习笔记(14.1)——面向对象基本概念、分析设计测试
  • 欣佰特携数十款机器人相关前沿产品,亮相第二届人形机器人和具身智能行业盛会
  • 网络编程 - 2
  • 阿里AI模型获FDA“突破性”认证,胰腺癌早筛实现关键突破|近屿智能邀你入局AIGC大模型
  • WordPress自定义页面与文章:打造独特网站风格的进阶指南
  • java 设计模式之模板方法模式
  • 广东江门公布“小客车坠海致3死”事故评估报告,司机被判三年缓五年
  • 乌克兰关切有中国人在俄军中服务,外交部:坚决反对无端指责
  • 最高检:去年共受理审查逮捕侵犯知识产权犯罪13486人
  • 深一度|王励勤二次创业从未停步,带领中国乒乓直面挑战
  • 金光耀:被激活的复旦记忆
  • 三博脑科跌超10%:董事长遭留置立案,称控制权未变化,经营秩序正常