20250418 一个正定矩阵的引理
引理:给定任意 w ∈ R 3 \boldsymbol{w}\in\mathbb{R}^3 w∈R3 和任意正交矩阵 R \boldsymbol{R} R(即 R T R = I \boldsymbol{R}^{T}\boldsymbol{R}=\boldsymbol{I} RTR=I),则有
R T ( R w ) × R = w × \boldsymbol{R}^{T}(\boldsymbol{R}\boldsymbol{w})^{\times}\boldsymbol{R}=\boldsymbol{w}^{\times} RT(Rw)×R=w×
证明: R \boldsymbol{R} R 为正交矩阵,那么可以理解为一种旋转矩阵,因此有 R ( w × l ) = ( R w ) × ( R l ) \boldsymbol{R}(\boldsymbol{w}{\times}\boldsymbol{l})=(\boldsymbol{R}\boldsymbol{w}){\times}(\boldsymbol{R}\boldsymbol{l}) R(w×l)=(Rw)×(Rl)那么 w × l = R − 1 ( R w ) × ( R l ) \boldsymbol{w}{\times}\boldsymbol{l}=\boldsymbol{R}^{-1}(\boldsymbol{R}\boldsymbol{w}){\times}(\boldsymbol{R}\boldsymbol{l}) w×l=R−1(Rw)×(Rl)进一步 w × l = R T ( R w ) × ( R l ) \boldsymbol{w}{\times}\boldsymbol{l}=\boldsymbol{R}^{T}(\boldsymbol{R}\boldsymbol{w}){\times}(\boldsymbol{R}\boldsymbol{l}) w×l=RT(Rw)×(Rl)考虑到叉乘算子的特性,有 w × l = R T ( R w ) × R l \boldsymbol{w}^{\times}\boldsymbol{l}=\boldsymbol{R}^{T}(\boldsymbol{R}\boldsymbol{w})^{\times}\boldsymbol{R}\boldsymbol{l} w×l=RT(Rw)×Rl因为该式对于任意 l ∈ R 3 \boldsymbol{l}\in\mathbb{R}^3 l∈R3 均成立,那么 R T ( R w ) × R = w × \boldsymbol{R}^{T}(\boldsymbol{R}\boldsymbol{w})^{\times}\boldsymbol{R}=\boldsymbol{w}^{\times} RT(Rw)×R=w×