【Bluedroid】蓝牙 HID 设备信息加载与注册机制及配置缓存系统源码解析
本篇解析Android蓝牙子系统加载配对HID设备的核心流程,通过btif_storage_load_bonded_hid_info
实现从NVRAM读取设备属性、验证绑定状态、构造描述符并注册到BTA_HH模块。重点剖析基于ConfigCache
的三层存储架构(全局配置/持久设备/临时设备),其通过动态持久化判定策略和LRU淘汰机制,在保证数据可靠性的同时实现高效内存管理。系统采用递归锁保障线程安全,支持多层级密钥解密校验,为蓝牙HID设备管理提供标准化解决方案。
-
作用:从NVRAM加载已配对蓝牙HID设备的信息,并将其注册到蓝牙HID主机模块(BTA_HH)
-
触发场景:系统启动时或需要重新加载HID设备信息时调用
btif_storage_load_bonded_hid_info
packages/modules/Bluetooth/system/btif/src/btif_profile_storage.cc
/********************************************************************************* Function btif_storage_load_bonded_hid_info** Description BTIF storage API - Loads hid info for all the bonded devices* from NVRAM and adds those devices to the BTA_HH.** Returns BT_STATUS_SUCCESS if successful, BT_STATUS_FAIL otherwise*******************************************************************************/
bt_status_t btif_storage_load_bonded_hid_info(void) {// 1. 遍历所有已配对设备for (const auto& bd_addr : btif_config_get_paired_devices()) {auto name = bd_addr.ToString();tAclLinkSpec link_spec; // 用于存储设备的连接信息log::verbose("Remote device:{}", ADDRESS_TO_LOGGABLE_CSTR(bd_addr));int value;// 2. 获取 HID 属性掩码if (!btif_config_get_int(name, BTIF_STORAGE_KEY_HID_ATTR_MASK, &value))continue;uint16_t attr_mask = (uint16_t)value;// 3. 检查设备是否已绑定if (btif_in_fetch_bonded_device(name) != BT_STATUS_SUCCESS) {btif_storage_remove_hid_info(bd_addr); // 移除该设备的 HID 信息continue;}// 4. 初始化设备描述信息结构体tBTA_HH_DEV_DSCP_INFO dscp_info;memset(&dscp_info, 0, sizeof(dscp_info));// 5. 获取设备描述信息btif_config_get_int(name, BTIF_STORAGE_KEY_HID_SUB_CLASS, &value);uint8_t sub_class = (uint8_t)value;btif_config_get_int(name, BTIF_STORAGE_KEY_HID_APP_ID, &value);uint8_t app_id = (uint8_t)value;btif_config_get_int(name, BTIF_STORAGE_KEY_HID_VENDOR_ID, &value);dscp_info.vendor_id = (uint16_t)value;btif_config_get_int(name, BTIF_STORAGE_KEY_HID_PRODUCT_ID, &value);dscp_info.product_id = (uint16_t)value;btif_config_get_int(name, BTIF_STORAGE_KEY_HID_VERSION, &value);dscp_info.version = (uint16_t)value;btif_config_get_int(name, BTIF_STORAGE_KEY_HID_COUNTRY_CODE, &value);dscp_info.ctry_code = (uint8_t)value;value = 0;btif_config_get_int(name, BTIF_STORAGE_KEY_HID_SSR_MAX_LATENCY, &value);dscp_info.ssr_max_latency = (uint16_t)value;value = 0;btif_config_get_int(name, BTIF_STORAGE_KEY_HID_SSR_MIN_TIMEOUT, &value);dscp_info.ssr_min_tout = (uint16_t)value;// 6. 获取设备描述符size_t len =btif_config_get_bin_length(name, BTIF_STORAGE_KEY_HID_DESCRIPTOR);if (len > 0) {dscp_info.descriptor.dl_len = (uint16_t)len;dscp_info.descriptor.dsc_list = (uint8_t*)alloca(len);btif_config_get_bin(name, BTIF_STORAGE_KEY_HID_DESCRIPTOR,(uint8_t*)dscp_info.descriptor.dsc_list, &len);}// 7. 添加设备到 BTA_HH 模块// add extracted information to BTA HHlink_spec.addrt.bda = bd_addr;link_spec.addrt.type = BLE_ADDR_PUBLIC;link_spec.transport = BT_TRANSPORT_AUTO;if (btif_hh_add_added_dev(link_spec, attr_mask)) {BTA_HhAddDev(link_spec, attr_mask, sub_class, app_id, dscp_info);}}return BT_STATUS_SUCCESS;
}
从非易失性随机访问存储器(NVRAM)里加载所有已配对蓝牙 HID(Human Interface Device,人机接口设备)设备的信息,并且将这些设备添加到 BTA_HH(Bluetooth Application - Human Interface Device Host)模块中。
核心流程:
btif_config_get_paired_devices
/packages/modules/Bluetooth/system/btif/src/btif_config.cc
std::vector<RawAddress> btif_config_get_paired_devices() {std::vector<std::string> names;CHECK(bluetooth::shim::is_gd_stack_started_up());// 获取持久化存储的设备名称names = bluetooth::shim::BtifConfigInterface::GetPersistentDevices();std::vector<RawAddress> result;result.reserve(names.size());// 遍历设备名称并转换为地址for (const auto& name : names) {RawAddress addr = {};// Gather up known devices from configuration section namesif (RawAddress::FromString(name, addr)) {result.emplace_back(addr);}}return result;
}
获取所有已配对蓝牙设备的地址,返回一个包含 RawAddress 对象的向量。借助 bluetooth::shim::BtifConfigInterface 来获取持久化存储的设备名称,然后将这些名称转换为 RawAddress 对象。
GetPersistentDevices
/packages/modules/Bluetooth/system/main/shim/config.cc
std::vector<std::string> BtifConfigInterface::GetPersistentDevices() {return GetStorage()->GetPersistentSections();
}
GetPersistentSections
packages/modules/Bluetooth/system/gd/storage/storage_module.cc
std::vector<std::string> StorageModule::GetPersistentSections() const {std::lock_guard<std::recursive_mutex> lock(mutex_);return pimpl_->cache_.GetPersistentSections();
}
ConfigCache::GetPersistentSections
/packages/modules/Bluetooth/system/gd/storage/config_cache.cc
std::vector<std::string> ConfigCache::GetPersistentSections() const {std::lock_guard<std::recursive_mutex> lock(mutex_);std::vector<std::string> paired_devices;paired_devices.reserve(persistent_devices_.size());// 遍历持久化设备并添加名称到容器中for (const auto& elem : persistent_devices_) {paired_devices.emplace_back(elem.first);}return paired_devices;
}
获取所有持久化设备的名称(可能代表设备的 MAC 地址等标识),并将这些名称存储在一个 std::vector<std::string> 类型的容器中返回。
btif_config_get_int
packages/modules/Bluetooth/system/btif/src/btif_config.cc
bool btif_config_get_int(const std::string& section, const std::string& key,int* value) {CHECK(bluetooth::shim::is_gd_stack_started_up());return bluetooth::shim::BtifConfigInterface::GetInt(section, key, value);
}
BtifConfigInterface::GetInt
packages/modules/Bluetooth/system/main/shim/config.cc
bool BtifConfigInterface::GetInt(const std::string& section,const std::string& property, int* value) {ASSERT(value != nullptr);auto ret = GetStorage()->GetInt(section, property);if (ret) {*value = *ret;}return ret.has_value();
}
从配置存储中获取指定部分(section)下指定属性(property)的整数值,并将该值存储到传入的指针 value 所指向的内存位置。若成功获取到值,则返回 true;若未获取到值,则返回 false。
packages/modules/Bluetooth/system/gd/storage/storage_module.cc
std::optional<int> StorageModule::GetInt(const std::string& section, const std::string& property) const {std::lock_guard<std::recursive_mutex> lock(mutex_);return ConfigCacheHelper::FromConfigCache(pimpl_->cache_).GetInt(section, property);
}
ConfigCacheHelper::GetInt
/packages/modules/Bluetooth/system/gd/storage/config_cache_helper.cc
std::optional<int> ConfigCacheHelper::GetInt(const std::string& section, const std::string& property) const {// 1. 获取属性的字符串值auto value_str = config_cache_.GetProperty(section, property);if (!value_str) {return std::nullopt;}// 2. 获取属性的 int64_t 类型值auto large_value = GetInt64(section, property);if (!large_value) {return std::nullopt;}// 3. 检查值是否在 int 类型的数值范围内if (!common::IsNumberInNumericLimits<int>(*large_value)) {return std::nullopt;}return static_cast<uint32_t>(*large_value);
}
从配置缓存中获取指定部分(section)和属性(property)对应的整数值。如果获取成功且该值在 int 类型的数值范围内,函数将返回该整数值;否则,返回 std::nullopt 表示未获取到有效的 int 类型值。
ConfigCache::GetProperty
/packages/modules/Bluetooth/system/gd/storage/config_cache.cc
std::optional<std::string> ConfigCache::GetProperty(const std::string& section, const std::string& property) const {// 加锁以保证线程安全std::lock_guard<std::recursive_mutex> lock(mutex_);// 1. 在 information_sections_ 中查找属性auto section_iter = information_sections_.find(section);if (section_iter != information_sections_.end()) {auto property_iter = section_iter->second.find(property);if (property_iter != section_iter->second.end()) {return property_iter->second;}}// 2. 在 persistent_devices_ 中查找属性section_iter = persistent_devices_.find(section);if (section_iter != persistent_devices_.end()) {auto property_iter = section_iter->second.find(property);if (property_iter != section_iter->second.end()) {std::string value = property_iter->second;if (os::ParameterProvider::GetBtKeystoreInterface() != nullptr && value == kEncryptedStr) {return os::ParameterProvider::GetBtKeystoreInterface()->get_key(section + "-" + property);}return value;}}// 3. 在 temporary_devices_ 中查找属性section_iter = temporary_devices_.find(section);if (section_iter != temporary_devices_.end()) {auto property_iter = section_iter->second.find(property);if (property_iter != section_iter->second.end()) {return property_iter->second;}}return std::nullopt;
}
从配置缓存里获取指定部分(section)和属性(property)的值。若能找到对应的值,就返回该值;若找不到,则返回 std::nullopt。
get_key
packages/modules/Bluetooth/system/btif/src/btif_keystore.cc
std::string get_key(std::string prefix) override {log::verbose("prefix: {}", prefix);// 检查回调函数指针是否为空if (!callbacks) {log::warn("callback isn't ready. prefix: {}", prefix);return "";}// 用于存储解密后的密钥字符串std::string decryptedString;// 尝试在 key_map 中查找以 prefix 为键的元素std::map<std::string, std::string>::iterator iter = key_map.find(prefix);if (iter == key_map.end()) {// 如果在 key_map 中未找到对应的元素// 调用回调函数从外部获取密钥decryptedString = callbacks->get_key(prefix);// 将获取到的密钥存储到 key_map 中,以便后续使用key_map[prefix] = decryptedString;log::verbose("get key from bluetoothkeystore.");} else {// 如果在 key_map 中找到了对应的元素// 直接从 key_map 中获取解密后的密钥decryptedString = iter->second;}// 返回解密后的密钥字符串return decryptedString;
}
根据给定的前缀 prefix
来获取对应的密钥。先尝试从本地的 key_map
中查找该密钥,如果找不到,会通过回调函数 callbacks->get_key
从外部(如蓝牙密钥存储库)获取密钥,并将其保存到 key_map
中,以便后续使用。
IsNumberInNumericLimits
packages/modules/Bluetooth/system/gd/common/numbers.h
// Check if input is within numeric limits of RawType
template <typename RawType, typename InputType>
bool IsNumberInNumericLimits(InputType input) {// Only arithmetic types are supportedstatic_assert(std::is_arithmetic_v<RawType> && std::is_arithmetic_v<InputType>);// Either both are signed or both are unsignedstatic_assert((std::is_signed_v<RawType> && std::is_signed_v<InputType>) ||(std::is_unsigned_v<RawType> && std::is_unsigned_v<InputType>));// 检查输入类型的最大值是否超过目标类型的最大值if (std::numeric_limits<InputType>::max() > std::numeric_limits<RawType>::max()) {if (input > std::numeric_limits<RawType>::max()) {return false;}}// 检查输入类型的最小值是否低于目标类型的最小值if (std::numeric_limits<InputType>::lowest() < std::numeric_limits<RawType>::lowest()) {if (input < std::numeric_limits<RawType>::lowest()) {return false;}}// 如果输入值在目标类型的数值范围内,返回 truereturn true;
}
IsNumberInNumericLimits 是一个模板函数,其作用是检查输入值 input 是否处于 RawType 类型所规定的数值范围之内。借助 C++ 的类型特性和数值极限工具,保证仅对算术类型(如整数、浮点数)进行操作,并且会对输入类型和目标类型的有符号性进行检查。
btif_config_get_bin_length
packages/modules/Bluetooth/system/btif/src/btif_config.cc
size_t btif_config_get_bin_length(const std::string& section,const std::string& key) {CHECK(bluetooth::shim::is_gd_stack_started_up());return bluetooth::shim::BtifConfigInterface::GetBinLength(section, key);
}
/packages/modules/Bluetooth/system/main/shim/config.cc
size_t BtifConfigInterface::GetBinLength(const std::string& section,const std::string& property) {auto value_vec = GetStorage()->GetBin(section, property);if (!value_vec) {return 0;}return value_vec->size();
}
packages/modules/Bluetooth/system/gd/storage/storage_module.cc
std::optional<int> StorageModule::GetInt(const std::string& section, const std::string& property) const {std::lock_guard<std::recursive_mutex> lock(mutex_);return ConfigCacheHelper::FromConfigCache(pimpl_->cache_).GetInt(section, property);
}
btif_hh_add_added_dev
packages/modules/Bluetooth/system/btif/src/btif_hh.cc
/******************************************************************************** Static variables******************************************************************************/
btif_hh_cb_t btif_hh_cb;/********************************************************************************* Function btif_hh_add_added_dev** Description Add a new device to the added device list.** Returns true if add successfully, otherwise false.******************************************************************************/
bool btif_hh_add_added_dev(const tAclLinkSpec& link_spec,tBTA_HH_ATTR_MASK attr_mask) {int i;// 第一次遍历:检查设备是否已经存在于已添加设备列表中for (i = 0; i < BTIF_HH_MAX_ADDED_DEV; i++) {if (btif_hh_cb.added_devices[i].link_spec.addrt.bda ==link_spec.addrt.bda) {// 如果设备已经存在,返回 falselog::warn("Device {} already added", ADDRESS_TO_LOGGABLE_STR(link_spec));return false;}}// 第二次遍历:寻找列表中的空位来添加新设备for (i = 0; i < BTIF_HH_MAX_ADDED_DEV; i++) {if (btif_hh_cb.added_devices[i].link_spec.addrt.bda.IsEmpty()) {// 找到空位后,记录添加设备的日志log::warn("Added device {}", ADDRESS_TO_LOGGABLE_STR(link_spec));// 将新设备的链接规格信息赋值给该空位btif_hh_cb.added_devices[i].link_spec = link_spec;// 初始化设备句柄为无效句柄btif_hh_cb.added_devices[i].dev_handle = BTA_HH_INVALID_HANDLE;// 赋值设备属性掩码btif_hh_cb.added_devices[i].attr_mask = attr_mask;// 添加成功,返回 truereturn true;}}// 如果列表已满,没有空位,记录错误日志并返回 falselog::warn("Error, out of space to add device");return false;
}
将一个新的设备添加到已添加设备列表中。先检查设备是否已经存在于列表中,如果存在则不添加并返回 false;若不存在,会尝试在列表中找到一个空位来添加该设备,若成功添加则返回 true;如果列表已满,无法添加新设备,也会返回 false。
BTA_HhAddDev
packages/modules/Bluetooth/system/bta/hh/bta_hh_api.cc
/********************************************************************************* Function BTA_HhAddDev** Description Add a virtually cabled device into HID-Host device list* to manage and assign a device handle for future API call,* host applciation call this API at start-up to initialize its* virtually cabled devices.** Returns void*******************************************************************************/
void BTA_HhAddDev(const tAclLinkSpec& link_spec, tBTA_HH_ATTR_MASK attr_mask,uint8_t sub_class, uint8_t app_id,tBTA_HH_DEV_DSCP_INFO dscp_info) {// 1. 计算所需内存大小size_t len = sizeof(tBTA_HH_MAINT_DEV) + dscp_info.descriptor.dl_len;// 2. 分配内存tBTA_HH_MAINT_DEV* p_buf = (tBTA_HH_MAINT_DEV*)osi_calloc(len);// 3. 设置消息头信息p_buf->hdr.event = BTA_HH_API_MAINT_DEV_EVT;p_buf->sub_event = BTA_HH_ADD_DEV_EVT;p_buf->hdr.layer_specific = BTA_HH_INVALID_HANDLE;// 4. 设置设备属性p_buf->attr_mask = (uint16_t)attr_mask;p_buf->sub_class = sub_class;p_buf->app_id = app_id;p_buf->link_spec = link_spec;// 5. 复制描述符信息memcpy(&p_buf->dscp_info, &dscp_info, sizeof(tBTA_HH_DEV_DSCP_INFO));if (dscp_info.descriptor.dl_len != 0 && dscp_info.descriptor.dsc_list) {p_buf->dscp_info.descriptor.dl_len = dscp_info.descriptor.dl_len;p_buf->dscp_info.descriptor.dsc_list = (uint8_t*)(p_buf + 1);memcpy(p_buf->dscp_info.descriptor.dsc_list, dscp_info.descriptor.dsc_list,dscp_info.descriptor.dl_len);} else {p_buf->dscp_info.descriptor.dsc_list = NULL;p_buf->dscp_info.descriptor.dl_len = 0;}// 6. 发送消息bta_sys_sendmsg(p_buf);
}
将一个虚拟有线设备添加到 HID - Host(人机接口设备主机)设备列表中进行管理,并为未来的 API 调用分配一个设备句柄。主机应用程序在启动时会调用此 API 来初始化其虚拟有线设备。
class ConfigCache
namespace bluetooth {
namespace storage {class Mutation;// A memory operated section-key-value structured config
//
// A section can be either persistent or temporary. When a section becomes persistent, all its properties are
// written to disk.
//
// A section becomes persistent when a property that is part of persistent_property_names_ is written to config cache;
// A section becomes temporary when all properties that are part of persistent_property_names_ is removed
//
// The definition of persistent sections is up to the user and is defined through the |persistent_property_names|
// argument. When these properties are link key properties, then persistent sections is equal to bonded devices
//
// This class is thread safe
class ConfigCache {public:ConfigCache(size_t temp_device_capacity, std::unordered_set<std::string_view> persistent_property_names);ConfigCache(const ConfigCache&) = delete;ConfigCache& operator=(const ConfigCache&) = delete;virtual ~ConfigCache() = default;// no copy// can moveConfigCache(ConfigCache&& other) noexcept;ConfigCache& operator=(ConfigCache&& other) noexcept;// comparison operators, callback doesn't countbool operator==(const ConfigCache& rhs) const;bool operator!=(const ConfigCache& rhs) const;// observersvirtual bool HasSection(const std::string& section) const;virtual bool HasProperty(const std::string& section, const std::string& property) const;// Get property, return std::nullopt if section or property does not existvirtual std::optional<std::string> GetProperty(const std::string& section, const std::string& property) const;// Returns a copy of persistent device MAC addressesvirtual std::vector<std::string> GetPersistentSections() const;// Return true if a section is persistentvirtual bool IsPersistentSection(const std::string& section) const;// Return true if a section has one of the properties in |property_names|virtual bool HasAtLeastOneMatchingPropertiesInSection(const std::string& section, const std::unordered_set<std::string_view>& property_names) const;// Return true if a property is part of persistent_property_names_virtual bool IsPersistentProperty(const std::string& property) const;// Serialize to legacy config formatvirtual std::string SerializeToLegacyFormat() const;// Return a copy of pair<section_name, property_value> with propertystruct SectionAndPropertyValue {std::string section;std::string property;bool operator==(const SectionAndPropertyValue& rhs) const {return section == rhs.section && property == rhs.property;}bool operator!=(const SectionAndPropertyValue& rhs) const {return !(*this == rhs);}};virtual std::vector<SectionAndPropertyValue> GetSectionNamesWithProperty(const std::string& property) const;// modifiers// Commit all mutation entries in sequence while holding the config mutexvirtual void Commit(std::queue<MutationEntry>& mutation);virtual void SetProperty(std::string section, std::string property, std::string value);virtual bool RemoveSection(const std::string& section);virtual bool RemoveProperty(const std::string& section, const std::string& property);virtual void ConvertEncryptOrDecryptKeyIfNeeded();// TODO: have a systematic way of doing this instead of specialized methods// Remove sections with |property| setvirtual void RemoveSectionWithProperty(const std::string& property);// remove all content in this config cache, restore it to the state after the explicit constructorvirtual void Clear();// Set a callback to notify interested party that a persistent config change has just happenedvirtual void SetPersistentConfigChangedCallback(std::function<void()> persistent_config_changed_callback);// Device config specific methods// TODO: methods here should be moved to a device specific config cache if this config cache is supposed to be generic// Legacy stack has device type inconsistencies, this method is trying to fix itvirtual bool FixDeviceTypeInconsistencies();// static methods// Check if section is formatted as a MAC addressstatic bool IsDeviceSection(const std::string& section);// constantsstatic const std::string kDefaultSectionName;private:mutable std::recursive_mutex mutex_;// A callback to notify interested party that a persistent config change has just happened, empty by defaultstd::function<void()> persistent_config_changed_callback_;// A set of property names that if set would make a section persistent and if non of these properties are set, a// section would become temporary againstd::unordered_set<std::string_view> persistent_property_names_;// Common section that does not relate to remote device, will be written to diskcommon::ListMap<std::string, common::ListMap<std::string, std::string>> information_sections_;// Information about persistent devices, normally paired, will be written to diskcommon::ListMap<std::string, common::ListMap<std::string, std::string>> persistent_devices_;// Information about temporary devices, normally unpaired, will not be written to disk, will be evicted automatically// if capacity exceeds given value during initializationcommon::LruCache<std::string, common::ListMap<std::string, std::string>> temporary_devices_;// Convenience method to check if the callback is valid before calling itinline void PersistentConfigChangedCallback() const {if (persistent_config_changed_callback_) {persistent_config_changed_callback_();}}
};} // namespace storage
} // namespace bluetooth
ConfigCache 类用于管理配置信息,这些信息以部分(section)和键值对的形式存储。部分可以是持久的(persistent)或临时的(temporary)。当写入属于 persistent_property_names_ 集合的属性时,部分会变为持久的;当移除所有属于 persistent_property_names_ 的属性时,部分会变为临时的。
采用分层存储策略的蓝牙配置缓存系统,通过持久化/临时化的二元分类和LRU淘汰机制,在内存效率与数据持久性之间取得平衡。
关键架构设计
①三元存储结构
-
通用配置段 (
information_sections_
)-
存储与具体设备无关的全局配置
-
使用
ListMap
保证有序存储 -
始终持久化到磁盘
-
-
持久化设备段 (
persistent_devices_
)-
存储已配对设备的配置信息
-
当包含
persistent_property_names_
定义的属性时自动持久化 -
使用
ListMap
维护插入顺序
-
-
临时设备段 (
temporary_devices_
)-
存储未配对设备的临时配置
-
采用
LruCache
实现,当容量超过初始化阈值时自动淘汰最久未使用的条目 -
不写入磁盘
-
②持久化判定机制
-
通过构造函数传入的
persistent_property_names
集合定义持久化属性 -
当设备配置段包含任意持久化属性时:
-
该段升级为持久化状态
-
所有属性(包括非持久化属性)将被写入磁盘
-
-
当所有持久化属性被移除时:
-
该段降级为临时状态
-
可能被LRU机制淘汰
-
③线程安全实现
-
使用
std::recursive_mutex
保护所有访问操作 -
支持递归加锁,避免死锁风险
-
所有public方法均通过mutex保护,保证多线程环境下的数据一致性
时序图
总结
①核心流程:系统启动时,通过遍历NVRAM中存储的已配对设备信息,提取HID属性(如子类、应用ID、描述符等),校验设备绑定状态后,将有效信息注册到蓝牙HID主机模块(BTA_HH)。采用7步链式处理(设备遍历→属性校验→描述符构建→主机注册),通过btif_config
系列接口实现跨模块数据透传,确保HID设备信息的完整性加载
②架构创新:
-
三元存储结构:分离全局配置/持久设备/临时设备数据,采用差异化的ListMap与LruCache容器
-
动态持久化:通过预定义
persistent_property_names
自动升级设备段存储等级,支持密钥触发式落盘 -
安全机制:集成数值范围校验模板(
IsNumberInNumericLimits
)、加密属性自动解密、双阶段设备查重
③生产级特性:
-
递归锁实现配置操作的原子性
-
设备描述符内存动态分配(
alloca
)避免内存泄漏 -
通过
Mutation
队列实现批量配置更新的事务性提交