Sentinel源码—7.参数限流和注解的实现一
大纲
1.参数限流的原理和源码
2.@SentinelResource注解的使用和实现
1.参数限流的原理和源码
(1)参数限流规则ParamFlowRule的配置Demo
(2)ParamFlowSlot根据参数限流规则验证请求
(1)参数限流规则ParamFlowRule的配置Demo
一.参数限流的应用场景
二.参数限流规则的属性
三.参数限流规则的配置Demo
一.参数限流的应用场景
传统的流量控制,一般是通过资源维度来限制某接口或方法的调用频率。但有时需要更细粒度地控制不同参数条件下的访问速率,即参数限流。参数限流允许根据不同的参数条件设置不同的流量控制规则,这种方式非常适合处理特定条件下的请求,因为能更加精细地管理流量。
假设有一个在线电影订票系统,某个接口允许用户查询电影的放映时间。但只希望每个用户每10秒只能查询接口1次,以避免过多的查询请求。这时如果直接将接口的QPS限制为5是不能满足要求的,因为需求是每个用户每5分钟只能查询1次,而不是每秒一共只能查询5次,因此参数限流就能派上用场了。
可以设置一个规则,根据用户ID来限制每个用户的查询频率,将限流的维度从资源维度细化到参数维度,从而实现每个用户每10秒只能查询接口1次。比如希望影院工作人员可以每秒查询10次,老板可以每秒查询100次,而购票者则只能每10秒查询一次,其中工作人员的userId值为100和200,老板的userId值为9999,那么可以如下配置:需要注意限流阈值是以秒为单位的,所以需要乘以统计窗口时长10。
二.参数限流规则的属性
public class ParamFlowRule extends AbstractRule {...//The threshold type of flow control (0: thread count, 1: QPS).//流量控制的阈值类型(0表示线程数,1表示QPS)private int grade = RuleConstant.FLOW_GRADE_QPS;//Parameter index.//参数下标private Integer paramIdx;//The threshold count.//阈值private double count;//Original exclusion items of parameters.//针对特定参数的流量控制规则列表private List<ParamFlowItem> paramFlowItemList = new ArrayList<ParamFlowItem>();//Indicating whether the rule is for cluster mode.//是否集群private boolean clusterMode = false;...
}//针对特定参数的流量控制规则
public class ParamFlowItem {private String object;private Integer count;private String classType;...
}
三.参数限流规则的配置Demo
//This demo demonstrates flow control by frequent ("hot spot") parameters.
public class ParamFlowQpsDemo {private static final int PARAM_A = 1;private static final int PARAM_B = 2;private static final int PARAM_C = 3;private static final int PARAM_D = 4;//Here we prepare different parameters to validate flow control by parameters.private static final Integer[] PARAMS = new Integer[] {PARAM_A, PARAM_B, PARAM_C, PARAM_D};private static final String RESOURCE_KEY = "resA";public static void main(String[] args) throws Exception {initParamFlowRules();final int threadCount = 20;ParamFlowQpsRunner<Integer> runner = new ParamFlowQpsRunner<>(PARAMS, RESOURCE_KEY, threadCount, 120);runner.tick();Thread.sleep(1000);runner.simulateTraffic();}private static void initParamFlowRules() {//QPS mode, threshold is 5 for every frequent "hot spot" parameter in index 0 (the first arg).ParamFlowRule rule = new ParamFlowRule(RESOURCE_KEY).setParamIdx(0).setGrade(RuleConstant.FLOW_GRADE_QPS).setCount(5);//We can set threshold count for specific parameter value individually.//Here we add an exception item. That means: //QPS threshold of entries with parameter `PARAM_B` (type: int) in index 0 will be 10, rather than the global threshold (5).ParamFlowItem item = new ParamFlowItem().setObject(String.valueOf(PARAM_B)).setClassType(int.class.getName()).setCount(10);rule.setParamFlowItemList(Collections.singletonList(item));//ParamFlowRuleManager类加载的一个时机是:它的静态方法被调用了//所以下面会先初始化ParamFlowRuleManager,再执行loadRules()方法ParamFlowRuleManager.loadRules(Collections.singletonList(rule));}
}public final class ParamFlowRuleManager {private static final Map<String, List<ParamFlowRule>> PARAM_FLOW_RULES = new ConcurrentHashMap<>();private final static RulePropertyListener PROPERTY_LISTENER = new RulePropertyListener();private static SentinelProperty<List<ParamFlowRule>> currentProperty = new DynamicSentinelProperty<>();static {currentProperty.addListener(PROPERTY_LISTENER);}//Load parameter flow rules. Former rules will be replaced.public static void loadRules(List<ParamFlowRule> rules) {try {//设置规则的值为rulescurrentProperty.updateValue(rules);} catch (Throwable e) {RecordLog.info("[ParamFlowRuleManager] Failed to load rules", e);}}static class RulePropertyListener implements PropertyListener<List<ParamFlowRule>> {@Overridepublic void configUpdate(List<ParamFlowRule> list) {Map<String, List<ParamFlowRule>> rules = aggregateAndPrepareParamRules(list);if (rules != null) {PARAM_FLOW_RULES.clear();PARAM_FLOW_RULES.putAll(rules);}RecordLog.info("[ParamFlowRuleManager] Parameter flow rules received: {}", PARAM_FLOW_RULES);}@Overridepublic void configLoad(List<ParamFlowRule> list) {Map<String, List<ParamFlowRule>> rules = aggregateAndPrepareParamRules(list);if (rules != null) {PARAM_FLOW_RULES.clear();PARAM_FLOW_RULES.putAll(rules);}RecordLog.info("[ParamFlowRuleManager] Parameter flow rules received: {}", PARAM_FLOW_RULES);}...}...
}public class DynamicSentinelProperty<T> implements SentinelProperty<T> {protected Set<PropertyListener<T>> listeners = new CopyOnWriteArraySet<>();private T value = null;public DynamicSentinelProperty() {}//添加监听器到集合@Overridepublic void addListener(PropertyListener<T> listener) {listeners.add(listener);//回调监听器的configLoad()方法初始化规则配置listener.configLoad(value);}//更新值@Overridepublic boolean updateValue(T newValue) {//如果值没变化,直接返回if (isEqual(value, newValue)) {return false;}RecordLog.info("[DynamicSentinelProperty] Config will be updated to: {}", newValue);//如果值发生了变化,则遍历监听器,回调监听器的configUpdate()方法更新对应的值value = newValue;for (PropertyListener<T> listener : listeners) {listener.configUpdate(newValue);}return true;}...
}//A traffic runner to simulate flow for different parameters.
class ParamFlowQpsRunner<T> {private final T[] params;private final String resourceName;private int seconds;private final int threadCount;private final Map<T, AtomicLong> passCountMap = new ConcurrentHashMap<>();private final Map<T, AtomicLong> blockCountMap = new ConcurrentHashMap<>();private volatile boolean stop = false;public ParamFlowQpsRunner(T[] params, String resourceName, int threadCount, int seconds) {this.params = params;this.resourceName = resourceName;this.seconds = seconds;this.threadCount = threadCount;for (T param : params) {passCountMap.putIfAbsent(param, new AtomicLong());blockCountMap.putIfAbsent(param, new AtomicLong());}}public void tick() {Thread timer = new Thread(new TimerTask());timer.setName("sentinel-timer-task");timer.start();}public void simulateTraffic() {for (int i = 0; i < threadCount; i++) {Thread t = new Thread(new RunTask());t.setName("sentinel-simulate-traffic-task-" + i);t.start();}}final class TimerTask implements Runnable {@Overridepublic void run() {long start = System.currentTimeMillis();System.out.println("Begin to run! Go go go!");System.out.println("See corresponding metrics.log for accurate statistic data");Map<T, Long> map = new HashMap<>(params.length);for (T param : params) {map.putIfAbsent(param, 0L);}while (!stop) {sleep(1000);//There may be a mismatch for time window of internal sliding window.//See corresponding `metrics.log` for accurate statistic log.for (T param : params) {System.out.println(String.format("[%d][%d] Parameter flow metrics for resource %s: pass count for param <%s> is %d, block count: %d",seconds, TimeUtil.currentTimeMillis(), resourceName, param,passCountMap.get(param).getAndSet(0), blockCountMap.get(param).getAndSet(0)));}System.out.println("=============================");if (seconds-- <= 0) {stop = true;}}long cost = System.currentTimeMillis() - start;System.out.println("Time cost: " + cost + " ms");System.exit(0);}}final class RunTask implements Runnable {@Overridepublic void run() {while (!stop) {Entry entry = null;T param = generateParam();try {entry = SphU.entry(resourceName, EntryType.IN, 1, param);//Add pass for parameter.passFor(param);} catch (BlockException e) {//block.incrementAndGet();blockFor(param);} catch (Exception ex) {//biz exceptionex.printStackTrace();} finally {//total.incrementAndGet();if (entry != null) {entry.exit(1, param);}}sleep(ThreadLocalRandom.current().nextInt(0, 10));}}}//Pick one of provided parameters randomly.private T generateParam() {int i = ThreadLocalRandom.current().nextInt(0, params.length);return params[i];}private void passFor(T param) {passCountMap.get(param).incrementAndGet();}private void blockFor(T param) {blockCountMap.get(param).incrementAndGet();}private void sleep(int timeMs) {try {TimeUnit.MILLISECONDS.sleep(timeMs);} catch (InterruptedException e) {}}
}
(2)ParamFlowSlot根据参数限流规则验证请求
一.ParamFlowSlot的entry()方法的逻辑
二.不同限流类型 + 阈值类型 + 流控效果的处理
三.流控效果为排队等待和直接拒绝的实现
四.参数限流是如何进行数据统计
五.参数限流验证请求的流程图总结
一.ParamFlowSlot的entry()方法的逻辑
ParamFlowSlot的entry()方法主要干了三件事:参数验证、获取当前资源的全部参数限流规则、循环每一个参数限流规则并判断此次请求是否被允许通过(如果不允许则直接抛出异常)。其中对每一条获取到的参数限流规则,都会通过ParamFlowChecker的passCheck()方法进行判断。
@Spi(order = -3000)
public class ParamFlowSlot extends AbstractLinkedProcessorSlot<DefaultNode> {@Overridepublic void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,boolean prioritized, Object... args) throws Throwable {//1.如果没配置参数限流规则,直接触发下一个Slotif (!ParamFlowRuleManager.hasRules(resourceWrapper.getName())) {fireEntry(context, resourceWrapper, node, count, prioritized, args);return;}//2.如果配置了参数限流规则,则调用ParamFlowSlot的checkFlow()方法,该方法执行完成后再触发下一个SlotcheckFlow(resourceWrapper, count, args);fireEntry(context, resourceWrapper, node, count, prioritized, args);}@Overridepublic void exit(Context context, ResourceWrapper resourceWrapper, int count, Object... args) {fireExit(context, resourceWrapper, count, args);}void applyRealParamIdx(/*@NonNull*/ ParamFlowRule rule, int length) {int paramIdx = rule.getParamIdx();if (paramIdx < 0) {if (-paramIdx <= length) {rule.setParamIdx(length + paramIdx);} else {//Illegal index, give it a illegal positive value, latter rule checking will pass.rule.setParamIdx(-paramIdx);}}}void checkFlow(ResourceWrapper resourceWrapper, int count, Object... args) throws BlockException {//1.如果没传递参数,则直接放行,代表不做参数限流逻辑if (args == null) {return;}//2.如果没给resourceWrapper这个资源配置参数限流规则,则直接放行if (!ParamFlowRuleManager.hasRules(resourceWrapper.getName())) {return;}//3.获取此资源的全部参数限流规则,规则可能会有很多个,所以是个ListList<ParamFlowRule> rules = ParamFlowRuleManager.getRulesOfResource(resourceWrapper.getName());//4.遍历获取到的参数限流规则for (ParamFlowRule rule : rules) {//进行参数验证applyRealParamIdx(rule, args.length);//Initialize the parameter metrics.ParameterMetricStorage.initParamMetricsFor(resourceWrapper, rule);//进行验证的核心方法:检查当前规则是否允许通过此请求,如果不允许,则抛出ParamFlowException异常if (!ParamFlowChecker.passCheck(resourceWrapper, rule, count, args)) {String triggeredParam = "";if (args.length > rule.getParamIdx()) {Object value = args[rule.getParamIdx()];//Assign actual value with the result of paramFlowKey methodif (value instanceof ParamFlowArgument) {value = ((ParamFlowArgument) value).paramFlowKey();}triggeredParam = String.valueOf(value);}throw new ParamFlowException(resourceWrapper.getName(), triggeredParam, rule);}}}
}
二.不同限流类型 + 阈值类型 + 流控效果的处理
在ParamFlowChecker的passCheck()方法中,参数值验证通过之后,会判断限流类型。如果是集群限流,则执行ParamFlowChecker的passClusterCheck()方法。如果是单机限流,则执行ParamFlowChecker的passLocalCheck()方法。
在ParamFlowChecker的passLocalCheck()方法中,则会根据不同的参数类型调用ParamFlowChecker的passSingleValueCheck()方法。根据该方法可以知道,参数限流支持两种阈值类型:一种是QPS,另一种是线程数。而QPS类型还支持两种流控效果,分别是排队等待和直接拒绝,但不支持Warm Up。
//Rule checker for parameter flow control.
public final class ParamFlowChecker {public static boolean passCheck(ResourceWrapper resourceWrapper, /*@Valid*/ ParamFlowRule rule, /*@Valid*/ int count, Object... args) {if (args == null) {return true;}//1.判断参数索引是否合法,这个就是配置参数限流时设置的下标,从0开始,也就是对应args里的下标//比如0就代表args数组里的第一个参数,如果参数不合法直接放行,相当于参数限流没生效 int paramIdx = rule.getParamIdx();if (args.length <= paramIdx) {return true;}//2.判断参数值是不是空,如果是空直接放行//Get parameter value.Object value = args[paramIdx];//Assign value with the result of paramFlowKey methodif (value instanceof ParamFlowArgument) {value = ((ParamFlowArgument) value).paramFlowKey();}//If value is null, then passif (value == null) {return true;}//3.集群限流if (rule.isClusterMode() && rule.getGrade() == RuleConstant.FLOW_GRADE_QPS) {return passClusterCheck(resourceWrapper, rule, count, value);}//4.单机限流return passLocalCheck(resourceWrapper, rule, count, value);}private static boolean passLocalCheck(ResourceWrapper resourceWrapper, ParamFlowRule rule, int count, Object value) {try {if (Collection.class.isAssignableFrom(value.getClass())) {//基本类型for (Object param : ((Collection)value)) {if (!passSingleValueCheck(resourceWrapper, rule, count, param)) {return false;}}} else if (value.getClass().isArray()) {//数组类型int length = Array.getLength(value);for (int i = 0; i < length; i++) {Object param = Array.get(value, i);if (!passSingleValueCheck(resourceWrapper, rule, count, param)) {return false;}}} else {//其他类型,也就是引用类型return passSingleValueCheck(resourceWrapper, rule, count, value);}} catch (Throwable e) {RecordLog.warn("[ParamFlowChecker] Unexpected error", e);}return true;}static boolean passSingleValueCheck(ResourceWrapper resourceWrapper, ParamFlowRule rule, int acquireCount, Object value) {if (rule.getGrade() == RuleConstant.FLOW_GRADE_QPS) {//类型是QPSif (rule.getControlBehavior() == RuleConstant.CONTROL_BEHAVIOR_RATE_LIMITER) {//流控效果为排队等待return passThrottleLocalCheck(resourceWrapper, rule, acquireCount, value);} else {//流控效果为直接拒绝return passDefaultLocalCheck(resourceWrapper, rule, acquireCount, value);}} else if (rule.getGrade() == RuleConstant.FLOW_GRADE_THREAD) {//类型是ThreadSet<Object> exclusionItems = rule.getParsedHotItems().keySet();long threadCount = getParameterMetric(resourceWrapper).getThreadCount(rule.getParamIdx(), value);if (exclusionItems.contains(value)) {int itemThreshold = rule.getParsedHotItems().get(value);return ++threadCount <= itemThreshold;}long threshold = (long)rule.getCount();return ++threadCount <= threshold;}return true;}...
}
三.流控效果为排队等待和直接拒绝的实现
当设置了QPS类型的流控效果为排队等待时,会调用ParamFlowChecker的passThrottleLocalCheck()方法。该方法实现排队等待效果的原理和流控规则FlowSlot通过RateLimiterController实现排队等待效果的原理是一样的。
//Rule checker for parameter flow control.
public final class ParamFlowChecker {...static boolean passThrottleLocalCheck(ResourceWrapper resourceWrapper, ParamFlowRule rule, int acquireCount, Object value) {ParameterMetric metric = getParameterMetric(resourceWrapper);CacheMap<Object, AtomicLong> timeRecorderMap = metric == null ? null : metric.getRuleTimeCounter(rule);if (timeRecorderMap == null) {return true;}//Calculate max token count (threshold)Set<Object> exclusionItems = rule.getParsedHotItems().keySet();long tokenCount = (long)rule.getCount();if (exclusionItems.contains(value)) {tokenCount = rule.getParsedHotItems().get(value);}if (tokenCount == 0) {return false;}long costTime = Math.round(1.0 * 1000 * acquireCount * rule.getDurationInSec() / tokenCount);while (true) {long currentTime = TimeUtil.currentTimeMillis();AtomicLong timeRecorder = timeRecorderMap.putIfAbsent(value, new AtomicLong(currentTime));if (timeRecorder == null) {return true;}//AtomicLong timeRecorder = timeRecorderMap.get(value);long lastPassTime = timeRecorder.get();long expectedTime = lastPassTime + costTime;if (expectedTime <= currentTime || expectedTime - currentTime < rule.getMaxQueueingTimeMs()) {AtomicLong lastPastTimeRef = timeRecorderMap.get(value);if (lastPastTimeRef.compareAndSet(lastPassTime, currentTime)) {long waitTime = expectedTime - currentTime;if (waitTime > 0) {lastPastTimeRef.set(expectedTime);try {TimeUnit.MILLISECONDS.sleep(waitTime);} catch (InterruptedException e) {RecordLog.warn("passThrottleLocalCheck: wait interrupted", e);}}return true;} else {Thread.yield();}} else {return false;}}}private static ParameterMetric getParameterMetric(ResourceWrapper resourceWrapper) {//Should not be null.return ParameterMetricStorage.getParamMetric(resourceWrapper);}
}
当设置了QPS类型的流控效果为直接拒绝时,会调用ParamFlowChecker的passDefaultLocalCheck()方法。该方法采取令牌桶的方式来实现:控制每个时间窗口只生产一次token令牌,且将令牌放入桶中,每个请求都从桶中取令牌,当可以获取到令牌时,则正常放行,反之直接拒绝。
//Rule checker for parameter flow control.
public final class ParamFlowChecker {...static boolean passDefaultLocalCheck(ResourceWrapper resourceWrapper, ParamFlowRule rule, int acquireCount, Object value) {ParameterMetric metric = getParameterMetric(resourceWrapper);CacheMap<Object, AtomicLong> tokenCounters = metric == null ? null : metric.getRuleTokenCounter(rule);CacheMap<Object, AtomicLong> timeCounters = metric == null ? null : metric.getRuleTimeCounter(rule);if (tokenCounters == null || timeCounters == null) {return true;}//Calculate max token count (threshold)Set<Object> exclusionItems = rule.getParsedHotItems().keySet();long tokenCount = (long)rule.getCount();if (exclusionItems.contains(value)) {tokenCount = rule.getParsedHotItems().get(value);}if (tokenCount == 0) {return false;}long maxCount = tokenCount + rule.getBurstCount();if (acquireCount > maxCount) {return false;}while (true) {long currentTime = TimeUtil.currentTimeMillis();AtomicLong lastAddTokenTime = timeCounters.putIfAbsent(value, new AtomicLong(currentTime));if (lastAddTokenTime == null) {//Token never added, just replenish the tokens and consume {@code acquireCount} immediately.tokenCounters.putIfAbsent(value, new AtomicLong(maxCount - acquireCount));return true;}//Calculate the time duration since last token was added.long passTime = currentTime - lastAddTokenTime.get();//A simplified token bucket algorithm that will replenish the tokens only when statistic window has passed.if (passTime > rule.getDurationInSec() * 1000) {AtomicLong oldQps = tokenCounters.putIfAbsent(value, new AtomicLong(maxCount - acquireCount));if (oldQps == null) {//Might not be accurate here.lastAddTokenTime.set(currentTime);return true;} else {long restQps = oldQps.get();long toAddCount = (passTime * tokenCount) / (rule.getDurationInSec() * 1000);long newQps = toAddCount + restQps > maxCount ? (maxCount - acquireCount): (restQps + toAddCount - acquireCount);if (newQps < 0) {return false;}if (oldQps.compareAndSet(restQps, newQps)) {lastAddTokenTime.set(currentTime);return true;}Thread.yield();}} else {AtomicLong oldQps = tokenCounters.get(value);if (oldQps != null) {long oldQpsValue = oldQps.get();if (oldQpsValue - acquireCount >= 0) {if (oldQps.compareAndSet(oldQpsValue, oldQpsValue - acquireCount)) {return true;}} else {return false;}}Thread.yield();}}}
}
四.参数限流是如何进行数据统计
由于参数限流的数据统计需要细化到参数值的维度,所以使用参数限流时需要注意OOM问题。比如根据用户ID进行限流,且用户数量有几千万,那么CacheMap将会包含几千万个不会被移除的键值对,而且会随着进程运行时间的增长而不断增加,最后可能会导致OOM。
public final class ParameterMetricStorage {private static final Map<String, ParameterMetric> metricsMap = new ConcurrentHashMap<>();//Lock for a specific resource.private static final Object LOCK = new Object();//Init the parameter metric and index map for given resource.//该方法在ParamFlowSlot的checkFlow()方法中被调用public static void initParamMetricsFor(ResourceWrapper resourceWrapper, /*@Valid*/ ParamFlowRule rule) {if (resourceWrapper == null || resourceWrapper.getName() == null) {return;}String resourceName = resourceWrapper.getName();ParameterMetric metric;//Assume that the resource is valid.if ((metric = metricsMap.get(resourceName)) == null) {synchronized (LOCK) {if ((metric = metricsMap.get(resourceName)) == null) {metric = new ParameterMetric();metricsMap.put(resourceWrapper.getName(), metric);RecordLog.info("[ParameterMetricStorage] Creating parameter metric for: {}", resourceWrapper.getName());}}}metric.initialize(rule);}//该方法在ParamFlowChecker的passThrottleLocalCheck()和passDefaultLocalCheck()方法执行getParameterMetric()方法时被调用public static ParameterMetric getParamMetric(ResourceWrapper resourceWrapper) {if (resourceWrapper == null || resourceWrapper.getName() == null) {return null;}return metricsMap.get(resourceWrapper.getName());}...
}//Metrics for frequent ("hot spot") parameters.
public class ParameterMetric {private static final int THREAD_COUNT_MAX_CAPACITY = 4000;private static final int BASE_PARAM_MAX_CAPACITY = 4000;private static final int TOTAL_MAX_CAPACITY = 20_0000;private final Object lock = new Object();//Format: (rule, (value, timeRecorder))private final Map<ParamFlowRule, CacheMap<Object, AtomicLong>> ruleTimeCounters = new HashMap<>();//Format: (rule, (value, tokenCounter))private final Map<ParamFlowRule, CacheMap<Object, AtomicLong>> ruleTokenCounter = new HashMap<>();private final Map<Integer, CacheMap<Object, AtomicInteger>> threadCountMap = new HashMap<>();public void initialize(ParamFlowRule rule) {if (!ruleTimeCounters.containsKey(rule)) {synchronized (lock) {if (ruleTimeCounters.get(rule) == null) {long size = Math.min(BASE_PARAM_MAX_CAPACITY * rule.getDurationInSec(), TOTAL_MAX_CAPACITY);ruleTimeCounters.put(rule, new ConcurrentLinkedHashMapWrapper<Object, AtomicLong>(size));}}}if (!ruleTokenCounter.containsKey(rule)) {synchronized (lock) {if (ruleTokenCounter.get(rule) == null) {long size = Math.min(BASE_PARAM_MAX_CAPACITY * rule.getDurationInSec(), TOTAL_MAX_CAPACITY);ruleTokenCounter.put(rule, new ConcurrentLinkedHashMapWrapper<Object, AtomicLong>(size));}}}if (!threadCountMap.containsKey(rule.getParamIdx())) {synchronized (lock) {if (threadCountMap.get(rule.getParamIdx()) == null) {threadCountMap.put(rule.getParamIdx(), new ConcurrentLinkedHashMapWrapper<Object, AtomicInteger>(THREAD_COUNT_MAX_CAPACITY));}}}}//Get the token counter for given parameter rule.//@param rule valid parameter rule//@return the associated token counterpublic CacheMap<Object, AtomicLong> getRuleTokenCounter(ParamFlowRule rule) {return ruleTokenCounter.get(rule);}//Get the time record counter for given parameter rule.//@param rule valid parameter rule//@return the associated time counterpublic CacheMap<Object, AtomicLong> getRuleTimeCounter(ParamFlowRule rule) {return ruleTimeCounters.get(rule);}public long getThreadCount(int index, Object value) {CacheMap<Object, AtomicInteger> cacheMap = threadCountMap.get(index);if (cacheMap == null) {return 0;}AtomicInteger count = cacheMap.get(value);return count == null ? 0L : count.get();}...
}
五.参数限流验证请求的流程图总结