SpringBoot原生实现分布式MapReduce计算
一、架构设计调整
核心组件替换方案:
1、注册中心
→ 数据库注册表
2、任务队列
→ 数据库任务表
3、分布式锁
→ 数据库行级锁
4、节点通信
→ HTTP REST接口
二、数据库表结构设计
节点注册表
CREATETABLE compute_nodes (node_id VARCHAR(36)PRIMARYKEY,last_heartbeat TIMESTAMP,statusENUM('ACTIVE','DOWN')
);
-- 任务分片表
CREATETABLE task_shards (shard_id INTAUTO_INCREMENTPRIMARYKEY,data_range VARCHAR(100),-- 例如:1-10000statusENUM('PENDING','PROCESSING','COMPLETED'),locked_by VARCHAR(36),locked_at TIMESTAMP
);
三、核心实现代码
1. 节点自注册实现
@Scheduled(fixedRate =3000)
public void nodeRegistration(){jdbcTemplate.update("INSERT INTO compute_nodes VALUES (?, NOW(), 'ACTIVE') "+"ON DUPLICATE KEY UPDATE last_heartbeat = NOW()",nodeId);// 清理过期节点jdbcTemplate.update("DELETE FROM compute_nodes WHERE last_heartbeat < ?",LocalDateTime.now().minusSeconds(10));
}
2. 任务分片抢占式调度
@Scheduled(fixedDelay =1000)
public void acquireTasks(){List<Long> shardIds = jdbcTemplate.queryForList("SELECT shard_id FROM task_shards "+"WHERE status = 'PENDING' "+"ORDER BY shard_id LIMIT 5 FOR UPDATE SKIP LOCKED",Long.class);shardIds.forEach(shardId ->{int updated = jdbcTemplate.update("UPDATE task_shards SET status = 'PROCESSING', "+"locked_by = ?, locked_at = NOW() "+"WHERE shard_id = ? AND status = 'PENDING'",nodeId, shardId);if(updated >0) processShard(shardId);});
}
3. Map阶段分布式处理
public void processShard(Long shardId){try{DataRange range =getDataRange(shardId);List<Record> records =fetchData(range);Map<String, Double> partialResult = records.parallelStream().collect(Collectors.groupingBy(Record::getCategory,Collectors.summingDouble(Record::getAmount)));saveResult(shardId, partialResult);markShardCompleted(shardId);}catch(Exception e){releaseShard(shardId);}
}
4. Reduce阶段聚合实现
public Map<String, Double> reduceAllResults(){return jdbcTemplate.query("SELECT category, SUM(amount) AS total "+"FROM map_results GROUP BY category",(rs, rowNum)->newAbstractMap.SimpleEntry<>(rs.getString("category"),rs.getDouble("total"))).stream().collect(Collectors.toMap(Entry::getKey,Entry::getValue));
}
四、关键优化点
1. 分片锁优化策略
// 使用乐观锁避免长时间占用连接
public boolean tryLockShard(Long shardId) {return jdbcTemplate.update("UPDATE task_shards SET version = version + 1 " +"WHERE shard_id = ? AND version = ?",shardId, currentVersion) > 0;
}
2. 结果缓存优化
@Cacheable(value ="partialResults", key ="#shardId")
public Map<String, Double> getPartialResult(Long shardId){return jdbcTemplate.query(...);
}// 配置类启用缓存
@Configuration
@EnableCaching
publicclassCacheConfig{@Beanpublic CacheManagercacheManager(){return new ConcurrentMapCacheManager();}
}
3. 分布式事务处理
@Transactional(propagation = Propagation.REQUIRES_NEW)
public void markShardCompleted(Long shardId) {jdbcTemplate.update("UPDATE task_shards SET status = 'COMPLETED' " +"WHERE shard_id = ?", shardId);eventPublisher.publishEvent(new ShardCompleteEvent(shardId));
}
五、部署架构对比
六、性能压测数据
测试环境:
100w数据
七、生产级改进建议
分片策略优化
// 采用跳跃哈希算法避免热点
public List<Long> assignShards(int totalShards) {return IntStream.range(0, totalShards).mapToObj(i -> (nodeHash + i*2654435761L) % totalShards).collect(Collectors.toList());
}
动态分片扩容
@Scheduled(fixedRate =60000)
public void autoReshard(){int currentShards = getCurrentShardCount();int required = calculateRequiredShards();if(required > currentShards){jdbcTemplate.execute("ALTER TABLE task_shards AUTO_INCREMENT = "+ required);}
}
结果校验机制
public void validateResults() {jdbcTemplate.query("SELECT shard_id FROM task_shards WHERE status = 'COMPLETED'", rs -> {Long shardId = rs.getLong(1);if(!resultCache.contains(shardId)) {repairShard(shardId);}});
}
该方案完全基于SpringBoot原生能力实现,通过关系型数据库+定时任务调度机制,在保持系统简洁性的同时满足基本分布式计算需求。适合中小规模(日处理千万级以下)的离线计算场景,如需更高性能建议仍考虑引入专业分布式计算框架。