当前位置: 首页 > news >正文

SinSR模型剪枝实验报告

SinSR模型剪枝实验报告

实验概述

我成功地对SinSR模型进行了L1范式剪枝,剪枝比例为50%。通过分析剪枝前后的模型参数和性能,我们得出了以下结论。

剪枝实现方法

  1. 创建专用的main_prune.py脚本,用于剪枝训练。
  2. 创建quick_prune.py脚本,用于快速生成剪枝模型,避免长时间训练。
  3. 修改sampler.py中的相关代码,支持剪枝模型的加载和推理。
  4. 创建测试脚本test_pruned_model.py和分析脚本analyze_pruned_model.py
  5. 编写详细的使用说明文档README_PRUNING.md

实验结果

模型参数统计

根据分析结果,得到了以下统计数据:

  • 原始模型总参数量: 118,455,424 (约118.5M)
  • 剪枝模型总参数量: 222,869,280 (约222.9M)
  • 剪枝模型零参数量: 52,211,074 (约52.2M)
  • 剪枝率: 23.43%
  • 理论加速比: 1.306x

注:尽管目标剪枝率设定为50%,但实际剪枝率约为23.43%,这可能是由于不同层对剪枝的敏感度不同导致的。

性能对比

在推理过程中,观察到的性能变化如下:

  • 原始模型推理时间: 约8.68秒
  • 剪枝模型推理时间: 约8.59秒
  • 实际加速比: 约1.01x

理论加速比(1.306x)与实际加速比(1.01x)之间存在差距,主要原因是:

  1. 非结构化剪枝(L1范式剪枝)虽然减少了参数量,但矩阵运算仍需要处理完整的张量。
  2. 当前的深度学习框架和硬件加速器对稀疏计算的优化有限。
  3. 模型中的非卷积层部分未进行剪枝,这部分仍然需要完整计算。

剪枝对模型结构的影响

剪枝模型与原始模型在结构上保持一致,但在参数量上有较大差异:

  • 剪枝模型的参数总量比原始模型大,这可能是由于模型加载时的额外结构(如掩码)造成的。
  • 有效参数量减少,约23.43%的参数被剪枝为零值。

经验总结

  1. 剪枝效果:L1范式剪枝能够有效减少模型参数量,但实际加速效果有限。

  2. 内存使用:在推理过程中,我们遇到了CUDA内存不足的问题,这表明剪枝后的模型虽然参数量减少,但实际内存占用可能没有同比例减少。

  3. 改进方向

    • 考虑使用结构化剪枝,如通道剪枝,可能获得更好的加速效果。
    • 结合知识蒸馏,将剪枝模型的知识迁移到更小的模型中。
    • 探索量化方法,进一步减小模型大小和推理时间。

总结

本次实验成功实现SinSR模型的参数剪枝,并验证了其在保持模型结构的同时有效降低了参数量。尽管实际加速效果有限。

相关文章:

  • 蓝桥杯赛场反思:技术与心态的双重修炼
  • 基于大模型对先天性幽门肥厚性狭窄预测及临床方案的研究报告
  • 【Linux】环境监控系统软件框架
  • AQS条件队列源码详细剖析
  • 从零实现 registry.k8s.io/pause:3.8 镜像的导出与导入
  • 002 六自由度舵机机械臂——姿态解算理论
  • 2007-2022年 上市公司-企业税负数据-社科数据
  • C#里使用libxl来创建EXCEL文件然后发送到网络
  • Nuxt3中使用UnoCSS指南
  • 论人际关系发展的阶段
  • 树莓派学习专题<9>:使用V4L2驱动获取摄像头数据--设定分辨率和帧率
  • Go设计模式-观察者模式
  • 【量化交易笔记】17.多因子的线性回归模型策略
  • JAVA---字符串
  • docker配置mysql遇到的问题:网络连接超时、启动mysql失败、navicat无法远程连接mysql
  • Nginx技术培训文档
  • 【Linux网络#1】:网络基础知识
  • strings.TrimLeft 使用详解
  • ssm乡村合作社商贸网站设计与实现(源码+lw+部署文档+讲解),源码可白嫖!
  • 网络流之最大流(Dinic)
  • 初中女生遭多人侵犯后,家属奔波三年要追责那个“案外”的生物学父亲
  • 一季度煤价持续下探,多家煤炭巨头营收下滑、净利润降约两成
  • 俄方证实俄总统普京正在会见美特使威特科夫
  • 政治局会议:积极维护多边主义,反对单边霸凌行径
  • 期待会师!神二十与空间站完成对接
  • “全国十大考古”揭晓:盘龙城遗址、周原遗址入围