我们分析前端生活。
传统的TTS系统通常由多个独立阶段组成,例如文本分析前端、声学模型和音频合成模块 。构建这些组件往往需要大量的领域专业知识,并且各个模块之间的复杂依赖关系可能导致系统脆弱性增加 。这种复杂性以及对专业知识的依赖促使研究人员转向端到端TTS模型的开发 。
近年来,深度学习技术的飞速发展极大地推动了TTS领域的发展 。深度神经网络强大的建模能力使得端到端TTS系统能够直接从配对的文本和音频数据中学习复杂的映射关系,无需人工设计特征或复杂的中间步骤 。端到端模型通过简化TTS流程,降低了系统的复杂性以及对领域专业知识的需求 。