当前位置: 首页 > news >正文

Transformer四模型回归打包(内含NRBO-Transformer-GRU、Transformer-GRU、Transformer、GRU模型)

Transformer四模型回归打包(内含NRBO-Transformer-GRU、Transformer-GRU、Transformer、GRU模型)

目录

    • Transformer四模型回归打包(内含NRBO-Transformer-GRU、Transformer-GRU、Transformer、GRU模型)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.【JCR一区级】Matlab实现NRBO-Transformer-GRU多变量回归预测,牛顿-拉夫逊算法优化Transformer-GRU组合模型(程序可以作为JCR一区级论文代码支撑,目前尚未发表);

2.优化参数为:学习率,隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

程序设计

  • 完整源码和数据获取方式:私信博主回复Transformer四模型回归打包(内含NRBO-Transformer-GRU、Transformer-GRU、Transformer、GRU模型)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  参数设置
options = trainingOptions('adam', ...      % ADAM 梯度下降算法'MiniBatchSize', 30, ...               % 批大小,每次训练样本个数30'MaxEpochs', 100, ...                  % 最大训练次数 100'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.5, ...        % 学习率下降因子'LearnRateDropPeriod', 50, ...         % 经过100次训练后 学习率为 0.01 * 0.5'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'Plots', 'training-progress', ...      % 画出曲线'Verbose', false);

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11003178.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/117378431
[3] https://blog.csdn.net/kjm13182345320/article/details/118253644

相关文章:

  • [AHOI2001] 质数和分解
  • 【计算机网络物理层】从信号传输到介质选型的核心技术解析
  • 机器学习基础理论 - 分类问题评估指标
  • PDF处理控件Aspose.PDF指南:如何使用 C# 在 PDF 中搜索
  • Maven 4.0.0 模式-pom.xml配置详解
  • MSO-Player:基于vlc的Unity直播流播放器,支持主流RTSP、RTMP、HTTP等常见格式
  • LLM模型的几何抽象:上文向量与Token距离的容量优化
  • GRS认证审核内容?GRS认证基本概述?GRS认证的好处?
  • Spark学习全总结
  • 前端零基础入门到上班:【Day8】JavaScript 基础语法入门
  • 面试题】找出两个整数 a,b 中的较大者
  • 【机器学习驱动的智能化电池管理技术与应用】
  • package.json script 中的 prepare 脚本的作用是什么
  • 00-算法打卡-目录
  • ReACT Agent 实战
  • 关于 React Fiber 架构、Hooks 原理
  • Python爬虫(8)Python数据存储实战:JSON文件读写与复杂结构化数据处理指南
  • pycharm无法创建venv虚拟环境
  • 大模型图像编辑那家强?
  • Centos8 安装 Docker
  • 超级干细胞有助改善生育治疗
  • 人民日报头版:上海纵深推进浦东高水平改革开放
  • 汽车爆炸致俄军中将死亡嫌疑人被羁押,作案全过程披露
  • 商务部:将打造一批国际消费集聚区和入境消费友好商圈
  • 孟泽:我们简化了历史,因此也简化了人性
  • 新华视点丨广西抗旱一线调查