机器学习-入门-线性模型(1)
机器学习-入门-线性模型(1)
文章目录
- 机器学习-入门-线性模型(1)
- 3.1 线性回归
- 3.2 最小二乘解
- 3.3 多元线性回归
3.1 线性回归
f ( x i ) = w x i + b 使得 f ( x i ) ≃ y i f(x_i) = wx_i + b \quad \text{使得} \quad f(x_i) \simeq y_i f(xi)=wxi+b使得f(xi)≃yi
离散属性的处理:若有"序"(order),则连续化;否则,转化为 k k k 维向量
令均方误差最小化,有:
( w ∗ , b ∗ ) = arg min ( w , b ) ∑ i = 1 m ( f ( x i ) − y i ) 2 = arg min ( w , b ) ∑ i = 1 m ( y i − w x i − b ) 2 (w^*, b^*) = \arg\min_{(w, b)} \sum_{i=1}^m (f(x_i) - y_i)^2 = \arg\min_{(w, b)} \sum_{i=1}^m (y_i - wx_i - b)^2 (w∗,b∗)=arg(w,b)mini=1∑m(f(xi)−yi)2=arg(w,b)mini=1∑m(yi−wxi−b)2
对 E ( w , b ) = ∑ i = 1 m ( y i − w x i − b ) 2 E(w, b) = \sum_{i=1}^m (y_i - wx_i - b)^2 E(w,b)=i=1∑m(yi−wxi−b)2 进行最小二乘参数估计
3.2 最小二乘解
E ( w , b ) = ∑ i = 1 m ( y i − w x i − b ) 2 E_{(w,b)} = \sum_{i=1}^m (y_i - wx_i - b)^2 E(w,b)=i=1∑m(yi−wxi−b)2
分别对 w w w 和 b b b 求导:
∂ E ( w , b ) ∂ w = 2 ( w ∑ i = 1 m x i 2 − ∑ i = 1 m ( y i − b ) x i ) \frac{\partial E_{(w,b)}}{\partial w} = 2 \left( w \sum_{i=1}^m x_i^2 - \sum_{i=1}^m (y_i - b)x_i \right) ∂w∂E(w,b)=2(wi=1∑mxi2−i=1∑m(yi−b)xi)
∂ E ( w , b ) ∂ b = 2 ( m b − ∑ i = 1 m ( y i − w x i ) ) \frac{\partial E_{(w,b)}}{\partial b} = 2 \left( mb - \sum_{i=1}^m (y_i - wx_i) \right) ∂b∂E(w,b)=2(mb−i=1∑m(yi−wxi))
令导数为 0,得到闭式(closed-form)解:
w = ∑ i = 1 m y i ( x i − x ˉ ) ∑ i = 1 m x i 2 − 1 m ( ∑ i = 1 m x i ) 2 b = 1 m ∑ i = 1 m ( y i − w x i ) w = \frac{\sum_{i=1}^m y_i (x_i - \bar{x})}{\sum_{i=1}^m x_i^2 - \frac{1}{m} \left( \sum_{i=1}^m x_i \right)^2} \quad b = \frac{1}{m} \sum_{i=1}^m (y_i - wx_i) w=∑i=1mxi2−m1(∑i=1mxi)2∑i=1myi(xi−xˉ)b=m1i=1∑m(yi−wxi)
3.3 多元线性回归
同样采用最小二乘法求解,有
w ∗ = arg min w ( y − X w ) T ( y − X w ) w^* = \arg\min_{w} (y - Xw)^T (y - Xw) w∗=argwmin(y−Xw)T(y−Xw)
令 E w = ( y − X w ) T ( y − X w ) E_w = (y - Xw)^T (y - Xw) Ew=(y−Xw)T(y−Xw),对 w w w 求导:
∂ E w ∂ w = 2 X T ( X w − y ) \frac{\partial E_w}{\partial w} = 2X^T (Xw - y) ∂w∂Ew=2XT(Xw−y)
令其为零可得 w w w
然而,麻烦来了:涉及矩阵求逆!
- 若 X T X X^T X XTX 满秩或正定,则 w ∗ = ( X T X ) − 1 X T y w^* = (X^T X)^{-1} X^T y w∗=(XTX)−1XTy
- 若 X T X X^T X XTX 不满秩,则可解出多个 w w w
若可解出多个解,可以引入正则化得到唯一解