用Python做有趣的AI项目 2:用 Python 和 NLTK 构建一个聊天机器人
✅ 项目目标
创建一个基础聊天机器人,能够通过简单规则或意图匹配理解用户的输入,并返回合适的回复。这个项目会让你了解 NLP(自然语言处理)的基础流程。
🛠️ 所需环境和依赖
安装必要库:
bash
pip install nltk numpy
首次使用 NLTK 还需要下载语言包(只需要一次):
python
import nltk
nltk.download('punkt') # 分词器
nltk.download('wordnet') # 词根还原
nltk.download('omw-1.4') # WordNet 数据集
🧠 聊天逻辑简介
我们将采用一种经典方式:意图分类(intent classification),用户的输入会匹配某个“意图”,然后返回相应的回答。
📁 第一步:准备聊天意图文件(intents.json)
先建一个 JSON 文件(命名为 intents.json):
json
{"intents": [{"tag": "问候","patterns": ["你好", "嗨", "在吗", "您好", "哈喽"],"responses": ["你好!有什么我可以帮您的吗?", "嗨,很高兴见到你!"]},{"tag": "再见","patterns": ["再见", "拜拜", "回见", "下次见"],"responses": ["再见啦,祝你愉快!", "拜拜!期待下次聊天。"]},{"tag": "感谢","patterns": ["谢谢", "感谢你", "多谢", "太好了"],"responses": ["不客气!", "随时为您服务 :)"]},{"tag": "天气","patterns": ["今天天气怎么样", "天气", "气温如何"],"responses": ["我不是天气预报员,但你可以看看手机天气哦~"]}]
}
🧱 第二步:构建数据预处理模块
python
import json
import random
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
加载数据
with open('intents.json', 'r', encoding='utf-8') as f:intents = json.load(f)lemmatizer = WordNetLemmatizer()
分析意图数据
words = []
classes = []
documents = []for intent in intents['intents']:for pattern in intent['patterns']:word_list = nltk.word_tokenize(pattern)words.extend(word_list)documents.append((word_list, intent['tag']))if intent['tag'] not in classes:classes.append(intent['tag'])
词干化、去重
words = [lemmatizer.lemmatize(w.lower()) for w in words if w.isalnum()]
words = sorted(set(words))
classes = sorted(set(classes))
🧠 第三步:构建训练数据
pythontraining = []
output_empty = [0] * len(classes)for doc in documents:bag = []word_patterns = [lemmatizer.lemmatize(w.lower()) for w in doc[0]]for w in words:bag.append(1 if w in word_patterns else 0)output_row = list(output_empty)output_row[classes.index(doc[1])] = 1training.append([bag, output_row])
转成 NumPy 数组
random.shuffle(training)
training = np.array(training, dtype=object)train_x = np.array(list(training[:, 0]))
train_y = np.array(list(training[:, 1]))
🧠 第四步:训练一个简单的神经网络模型
pythonfrom tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropoutmodel = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])model.fit(train_x, train_y, epochs=200, batch_size=5, verbose=1)
model.save('chatbot_model.h5')
🗨️ 第五步:实现聊天功能
pythonimport random
from tensorflow.keras.models import load_modelmodel = load_model('chatbot_model.h5')def clean_up_sentence(sentence):sentence_words = nltk.word_tokenize(sentence)sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]return sentence_wordsdef bag_of_words(sentence, words):sentence_words = clean_up_sentence(sentence)bag = [0] * len(words)for s in sentence_words:for i, w in enumerate(words):if w == s:bag[i] = 1return np.array(bag)def classify(sentence):bow = bag_of_words(sentence, words)res = model.predict(np.array([bow]))[0]thresh = 0.25results = [(i, r) for i, r in enumerate(res) if r > thresh]results.sort(key=lambda x: x[1], reverse=True)return classes[results[0][0]] if results else "无匹配"def get_response(intent_tag):for intent in intents['intents']:if intent['tag'] == intent_tag:return random.choice(intent['responses'])
聊天循环
print("你好,我是智能助手(输入 '退出' 来结束对话)")
while True:message = input("你:")if message.lower() in ['退出', 'bye', 'exit']:print("机器人:再见啦!")breakintent = classify(message)response = get_response(intent)print("机器人:", response)
💡 拓展建议
添加更多意图和训练语料
使用 transformers 加载预训练模型(如 BERT)进行意图识别
添加记忆能力或上下文理解
加入语音识别(SpeechRecognition)或语音输出(TTS)