当前位置: 首页 > news >正文

【视频生成模型】通义万相Wan2.1模型本地部署和LoRA微调

目录

  • 1 简介
  • 2 本地部署
    • 2.1 配置环境
    • 2.2 下载模型
  • 3 文生视频
    • 3.1 运行命令
    • 3.2 生成结果
  • 4 图生视频
    • 4.1 运行命令
    • 4.2 生成结果
  • 5 首尾帧生成视频
    • 5.1 运行命令
    • 5.2 生成结果
  • 6 提示词扩展
  • 7 LoRA微调

1 简介

2 本地部署

2.1 配置环境

将Wan2.1工程克隆到本地:

git clone https://github.com/Wan-Video/Wan2.1.git
cd Wan2.1

安装依赖库:

# Ensure torch >= 2.4.0
pip install -r requirements.txt

如果安装flash_attn较慢,可以直接下载flash-attn安装包,离线安装,下载地址:https://github.com/Dao-AILab/flash-attention/releases

2.2 下载模型

到modelscope上下载模型:

pip install modelscope
modelscope download Wan-AI/Wan2.1-T2V-14B --local_dir ./Wan2.1-T2V-14B

3 文生视频

3.1 运行命令

Single-GPU:

python generate.py  --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."

如果显存较小,遇到OOM(内存不足)问题,可以使用–offload_model True和–t5_cpu选项来减少GPU内存使用。例如,在RTX 4090 GPU上:

python generate.py  --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --offload_model True --t5_cpu --sample_shift 8 --sample_guide_scale 6 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."

Multi-GPU:

pip install "xfuser>=0.4.1"
torchrun --nproc_per_node=8 generate.py --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."

3.2 生成结果

使用Wan2.1-T2V-14B模型,迭代50步:

单卡耗时约2小时,显存占用80多GB。
(和官方说的5秒视频需要10分钟不太相符,是什么原因?)

t2v-14b耗时

t2v-14b显存

8卡耗时约15分钟,每张卡占用显存30多GB。

8gpu耗时
8GPU显存

生成结果:
bilibili

视频截图

4 图生视频

4.1 运行命令

Single-GPU:

python generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."

Multi-GPU:

torchrun --nproc_per_node=8 generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."

4.2 生成结果

8卡耗时12分钟左右,每张卡显存占用约48GB。

I2V

输入图片:

在这里插入图片描述

生成结果:bilibili

5 首尾帧生成视频

5.1 运行命令

Single-GPU:

python generate.py --task flf2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-FLF2V-14B-720P --first_frame examples/flf2v_input_first_frame.png --last_frame examples/flf2v_input_last_frame.png --prompt "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird’s feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."

Multi-GPU:

torchrun --nproc_per_node=8 generate.py --task flf2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-FLF2V-14B-720P --first_frame examples/flf2v_input_first_frame.png --last_frame examples/flf2v_input_last_frame.png --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird’s feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."

5.2 生成结果

8卡耗时30分钟左右,每张卡显存占用约48GB。

输入首帧:

first

输入尾帧:

last

生成结果:bilibili

6 提示词扩展

此外,我们还可以使用本地模型进行提示词扩展(Prompt Extension)。

对于文本到视频的任务,您可以使用Qwen/Qwen2.5-14B-Instruct、Qwen/Qwen2.5-7B-Instruct 和Qwen/Qwen2.5-3B-Instruct等模型。

对于图像到视频或最后一帧到视频的任务,您可以使用Qwen/Qwen2.5-VL-7B-Instruct和Qwen/Qwen2.5-VL-3B-Instruct等模型。

较大的模型通常提供更好的扩展结果,但需要更多的GPU内存。

可以使用参数–prompt_extension_model修改用于扩展的模型,例如:

  1. 文生视频:
python generate.py  --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage" --use_prompt_extend --prompt_extend_method 'local_qwen' --prompt_extend_target_lang 'zh'
  1. 图生视频:
python generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --use_prompt_extend --prompt_extend_model Qwen/Qwen2.5-VL-7B-Instruct --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
  1. 首尾帧生成视频:
python generate.py --task flf2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-FLF2V-14B-720P --first_frame examples/flf2v_input_first_frame.png --last_frame examples/flf2v_input_last_frame.png --use_prompt_extend --prompt_extend_model Qwen/Qwen2.5-VL-7B-Instruct --prompt "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird’s feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."

7 LoRA微调

请参考:LoRA微调Wan2.1教程

git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .

Step 1: Install additional packages

pip install peft lightning pandas

Step 2: Prepare your dataset

You need to manage the training videos as follows:

data/example_dataset/
├── metadata.csv
└── train├── video_00001.mp4└── image_00002.jpg

metadata.csv:

file_name,text
video_00001.mp4,"video description"
image_00002.jpg,"video description"

We support both images and videos. An image is treated as a single frame of video.

Step 3: Data process

CUDA_VISIBLE_DEVICES="0" python examples/wanvideo/train_wan_t2v.py \--task data_process \--dataset_path data/example_dataset \--output_path ./models \--text_encoder_path "models/Wan-AI/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth" \--vae_path "models/Wan-AI/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth" \--tiled \--num_frames 81 \--height 480 \--width 832

After that, some cached files will be stored in the dataset folder.

data/example_dataset/
├── metadata.csv
└── train├── video_00001.mp4├── video_00001.mp4.tensors.pth├── video_00002.mp4└── video_00002.mp4.tensors.pth

Step 4: Train

LoRA training:

CUDA_VISIBLE_DEVICES="0" python examples/wanvideo/train_wan_t2v.py \--task train \--train_architecture lora \--dataset_path data/example_dataset \--output_path ./models \--dit_path "models/Wan-AI/Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors" \--steps_per_epoch 500 \--max_epochs 10 \--learning_rate 1e-4 \--lora_rank 16 \--lora_alpha 16 \--lora_target_modules "q,k,v,o,ffn.0,ffn.2" \--accumulate_grad_batches 1 \--use_gradient_checkpointing

Full training:

CUDA_VISIBLE_DEVICES="0" python examples/wanvideo/train_wan_t2v.py \--task train \--train_architecture full \--dataset_path data/example_dataset \--output_path ./models \--dit_path "models/Wan-AI/Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors" \--steps_per_epoch 500 \--max_epochs 10 \--learning_rate 1e-4 \--accumulate_grad_batches 1 \--use_gradient_checkpointing

If you wish to train the 14B model, please separate the safetensor files with a comma. For example: models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00001-of-00006.safetensors,models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00002-of-00006.safetensors,models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00003-of-00006.safetensors,models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00004-of-00006.safetensors,models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00005-of-00006.safetensors,models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00006-of-00006.safetensors.

If you wish to train the image-to-video model, please add an extra parameter --image_encoder_path "models/Wan-AI/Wan2.1-I2V-14B-480P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth".

For LoRA training, the Wan-1.3B-T2V model requires 16G of VRAM for processing 81 frames at 480P, while the Wan-14B-T2V model requires 60G of VRAM for the same configuration. To further reduce VRAM requirements by 20%-30%, you can include the parameter --use_gradient_checkpointing_offload.

Step 5: Test

Test LoRA:

import torch
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoDatamodel_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
model_manager.load_models(["models/Wan-AI/Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors","models/Wan-AI/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth","models/Wan-AI/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth",
])
model_manager.load_lora("models/lightning_logs/version_1/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = WanVideoPipeline.from_model_manager(model_manager, device="cuda")
pipe.enable_vram_management(num_persistent_param_in_dit=None)video = pipe(prompt="...",negative_prompt="...",num_inference_steps=50,seed=0, tiled=True
)
save_video(video, "video.mp4", fps=30, quality=5)

Test fine-tuned base model:

import torch
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoDatamodel_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
model_manager.load_models(["models/lightning_logs/version_1/checkpoints/epoch=0-step=500.ckpt","models/Wan-AI/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth","models/Wan-AI/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth",
])
pipe = WanVideoPipeline.from_model_manager(model_manager, device="cuda")
pipe.enable_vram_management(num_persistent_param_in_dit=None)video = pipe(prompt="...",negative_prompt="...",num_inference_steps=50,seed=0, tiled=True
)
save_video(video, "video.mp4", fps=30, quality=5)

相关文章:

  • Python----深度学习(基于DNN的吃鸡预测)
  • 动手学深度学习11.11. 学习率调度器-笔记练习(PyTorch)
  • arcpy列表函数的应用(4)
  • MySQL的锁(InnoDB)【学习笔记】
  • win11报错 ‘wmic‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件 的解决方案
  • NestJS + Kafka 秒杀系统完整实践总结
  • 在 Ubuntu 24.04 系统上安装和管理 Nginx
  • SDRAM介绍和时序
  • 列出es查询match、term、wildcard、prefix、fuzzy、range、query_string、text、missing的区别及用法
  • 数据可视化 —— 饼图
  • 人工智能时代的网络安全威胁
  • EN18031测试,EN18031认证,EN18031报告解读
  • [Jupyter Notebook]:Jupyter Notebook 安装教程(代码编辑器)
  • C# 高级编程:Linq
  • uniapp跳转和获取参数方式
  • 基于javaweb的SpringBoot新闻发布系统设计与实现(源码+文档+部署讲解)
  • ultralytics-YOLO模型在windows环境部署
  • C++学习:六个月从基础到就业——模板编程:模板特化
  • css响应式布局设置子元素高度和宽度一样
  • 华为 MRAG:多模态检索增强生成技术论文阅读
  • 普京发表声明感谢协助俄军收复库尔斯克州的朝鲜军人
  • 第二十届中国电影华表奖揭晓!完整获奖名单来了
  • 多家媒体及网红走进云南曲靖沾益:感受珠江源头
  • 伊朗港口爆炸事件已致195人受伤
  • “爱泼斯坦案”关键证人弗吉尼亚·朱弗雷自杀身亡
  • 一季度煤价持续下探,多家煤炭巨头营收下滑、净利润降约两成