DeepSeek 多头潜在注意力(Multi-Head Latent Attention, MLA)技术
1. 核心原理
多头潜在注意力(MLA)是Transformer架构的扩展技术,通过潜在空间投影和多注意力头并行计算增强模型对长序列和复杂特征的建模能力。
1.1 关键技术点
-
潜在空间压缩
将原始高维注意力矩阵投影到低维潜在空间,降低计算复杂度(从 O ( n 2 ) → O ( n k ) O(n^2)\rightarrow O(nk) O(n2)→O(nk), k ≪ n k \ll n k≪n) -
多头异构注意力
每个注意力头使用独立的潜在空间基向量,捕获不同语义特征 -
动态门控融合
通过可学习参数自动加权各注意力头的输出
1.2 数学表示
MLA ( Q , K , V ) = Concat ( head 1 , . . . , head h ) W O head i = Softmax ( ( Q W i Q ) ( Φ i K W i K ) T d k ) V W i V \text{MLA}(Q,K,V) = \text{Concat}(\text{head}_1,...,\text{head}_h)W^O \\ \text{head}_i = \text{Softmax}\left(\frac{(QW_i^Q)(\Phi_i KW_i^K)^T}{\sqrt{d_k}}\right)VW_i^V MLA(Q,K,V)=Concat(head1,...,headh)WOheadi=Softmax(dk(QWiQ)(ΦiKWiK)T)VWiV
其中 Φ i ∈ R k × d \Phi_i \in \mathbb{R}^{k \times d} Φi∈Rk×d 是第 i i i个头的潜在空间投影矩阵
2. PyTorch 实现
import torch
import torch.nn as nn
import torch.nn.functional as Fclass MultiHeadLatentAttention(nn.Module):def __init__(self, d_model=512, n_heads=8, latent_dim=64):super().__init__()assert d_model % n_heads == 0self.d_k = d_model // n_headsself.n_heads = n_headsself.latent_dim = latent_dim# 投影矩阵self.W_q = nn.Linear(d_model, d_model)self.W_k = nn.Linear(d_model, d_model)self.W_v = nn.Linear(d_model, d_model)self.W_o = nn.Linear(d_model, d_model)# 潜在空间基向量(每个头独立)self.phi = nn.ParameterList([nn.Parameter(torch.randn(latent_dim, d_model)) for _ in range(n_heads)])def forward(self, q, k, v, mask=None):batch_size = q.size(0)# 1. 线性投影q = self.W_q(q).view(batch_size, -1, self.n_heads, self.d_k)k = self.W_k(k).view(batch_size, -1, self.n_heads, self.d_k)v = self.W_v(v).view(batch_size, -1, self.n_heads, self.d_k)# 2. 多头潜在注意力计算outputs = []for i in range(self.n_heads):# 潜在空间投影k_proj = torch.matmul(self.phi[i], k.transpose(1,2))# 缩放点积注意力scores = torch.matmul(q[:,:,i], k_proj.transpose(1,2)) / torch.sqrt(torch.tensor(self.d_k))if mask is not None:scores = scores.masked_fill(mask == 0, -1e9)attn = F.softmax(scores, dim=-1)# 头输出head_out = torch.matmul(attn, v[:,:,i])outputs.append(head_out)# 3. 多头融合output = torch.cat(outputs, dim=-1)return self.W_o(output)
3. 技术优势对比
特性 | 标准Attention | MLA |
---|---|---|
计算复杂度 | O ( n 2 ) O(n^2) O(n2) | O ( n k ) O(nk) O(nk) |
序列长度上限 | $\sim$2k | $\sim$10k+ |
参数量 | 4 d 2 4d^2 4d2 | 4 d 2 + n h d 4d^2 + nhd 4d2+nhd |
4. 复杂度分析
原始注意力矩阵计算:
A = Q K T ∈ R n × n A = QK^T \in \mathbb{R}^{n \times n} A=QKT∈Rn×n
MLA的近似计算:
A ≈ Q ( Φ K ) T ∈ R n × k , k ≪ n A \approx Q(\Phi K)^T \in \mathbb{R}^{n \times k}, \quad k \ll n A≈Q(ΦK)T∈Rn×k,k≪n
内存节省比例:
η = 1 − k n \eta = 1 - \frac{k}{n} η=1−nk
当 n = 8192 n=8192 n=8192, k = 256 k=256 k=256时, η = 96.9 % \eta = 96.9\% η=96.9%