当前位置: 首页 > news >正文

年龄预测识别模型训练python代码

涵盖断点续训、早停机制、定期保存检查点等

检查点保存逻辑

检查点保存分为两种:

最新检查点:每次训练都会保存为 latest.pth,用于恢复训练。

最佳模型:仅在验证损失达到新低时保存为 model_best.pth。

定期保存(每 checkpoint_interval 轮)也确保了即使训练中断,也能恢复到最近的状态。

2. 早停机制

当验证损失连续 early_stop_patience 轮未改善时,触发早停,避免过拟合或浪费计算资源。

这是一个非常实用的功能,特别是在超参数调试阶段。

3. 命令行参数支持

使用 argparse 支持通过命令行指定恢复训练的检查点路径,提升了脚本的灵活性。

4. CUDA基准模式

启用 torch.backends.cudnn.benchmark = True 可以加速卷积操作,尤其是在输入尺寸固定的情况下。

"""
一个黑客创业者:年龄预测模型完整训练(支持CPU/GPU、断点续训、早停机制)
执行方式:
1. 训练:python train_age.py
2. 恢复:python train_age.py --resume ./checkpoints/latest.pth
"""

import os
import time
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, models
from PIL import Image
from tqdm import tqdm

# 配置参数
CONFIG = {
    # 数据路径
    "train_age_list": r"D:\daku\性别\megaage_asian\list\train_age.txt",
    "val_age_list": r"D:\daku\性别\megaage_asian\list\test_age.txt",
    "train_image_dir": r"D:\daku\性别\megaage_asian\train",
    "val_image_dir": r"D:\daku\性别\megaage_asian\val",

    # 训练参数
    "batch_size": 64,
    "num_workers": 4 if torch.cuda.is_available() else 2,
    "learning_rate": 3e-4,
    "num_epochs": 100,
    "input_size": 224,

    # 系统参数
    "checkpoint_dir": "./checkpoints",
    "checkpoint_interval": 1,
    "early_stop_patience": 7,
    "use_amp": torch.cuda.is_available(),  # 自动判断是否启用混合精度
    "resume": None
}


class AgeDataset(Dataset):
    """处理序号命名图片和年龄列表的数据集"""

    def __init__(self, age_list_path, image_dir, transform=None):
        self.image_dir = image_dir
        self.transform = transform

        # 加载年龄数据
        with open(age_list_path, 'r') as f:
            self.ages = []
            line_count = 0
            for line in f:
                line_count += 1
                line = line.strip()
                try:
                    age = float(line)
                    if 0 <= age <= 120:
                        self.ages.append(age)
                    else:
                        print(f"行 {line_count}: 异常年龄值 {age},已过滤")
                except ValueError:
                    print(f"行 {line_count}: 无效年龄值 '{line}',已跳过")

        # 加载并排序图片文件
        self.image_files = sorted(
            [f for f in os.listdir(image_dir)
             if f.lower().endswith(('.jpg', '.jpeg', '.png'))],
            key=lambda x: int(os.path.splitext(x)[0])
        )

        # 对齐数据长度
        self.num_samples = min(len(self.ages), len(self.image_files))
        if len(self.ages) != len(self.image_files):
            print(
                f"警告: 年龄数({len(self.ages)})与图片数({len(self.image_files)})不一致,使用前{self.num_samples}个样本")

    def __len__(self):
        return self.num_samples

    def __getitem__(self, idx):
        # 生成图片路径
        img_name = self.image_files[idx]
        img_path = os.path.join(self.image_dir, img_name)

        # 加载图片
        try:
            with Image.open(img_path) as img:
                image = img.convert('RGB')
        except Exception as e:
            print(f"图片加载失败: {img_path},错误: {str(e)}")
            return self[(idx + 1) % len(self)]  # 跳过错误样本

        # 获取年龄
        age = torch.tensor(self.ages[idx], dtype=torch.float32)

        if self.transform:
            image = self.transform(image)

        return image, age


def create_data_loaders():
    """创建数据加载器"""
    train_transform = transforms.Compose([
        transforms.Resize(256),
        transforms.RandomCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    val_transform = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    # 创建数据集
    train_set = AgeDataset(CONFIG["train_age_list"], CONFIG["train_image_dir"], train_transform)
    val_set = AgeDataset(CONFIG["val_age_list"], CONFIG["val_image_dir"], val_transform)

    print(f"\n数据集统计:")
    print(f"训练样本: {len(train_set)} | 验证样本: {len(val_set)}")

    # 创建数据加载器
    train_loader = DataLoader(
        train_set,
        batch_size=CONFIG["batch_size"],
        shuffle=True,
        num_workers=CONFIG["num_workers"],
        pin_memory=torch.cuda.is_available(),
        persistent_workers=torch.cuda.is_available()
    )

    val_loader = DataLoader(
        val_set,
        batch_size=CONFIG["batch_size"],
        shuffle=False,
        num_workers=CONFIG["num_workers"],
        pin_memory=torch.cuda.is_available()
    )

    return train_loader, val_loader


class AgeRegressor(nn.Module):
    """年龄回归模型"""

    def __init__(self, pretrained=True):
        super().__init__()
        base_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT if pretrained else None)
        self.feature_extractor = nn.Sequential(*list(base_model.children())[:-1])
        self.regressor = nn.Sequential(
            nn.Linear(base_model.fc.in_features, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, 1)
        )

    def forward(self, x):
        features = self.feature_extractor(x).flatten(1)
        return self.regressor(features).squeeze(1)


def initialize_training(resume_path=None):
    """初始化训练环境"""
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"\n训练设备: {device}")

    # 初始化模型
    model = AgeRegressor().to(device)
    optimizer = optim.AdamW(model.parameters(), lr=CONFIG["learning_rate"], weight_decay=1e-4)
    criterion = nn.HuberLoss()

    # 自动处理AMP
    scaler = torch.cuda.amp.GradScaler(enabled=CONFIG["use_amp"]) if torch.cuda.is_available() else None
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=3)

    # 训练状态
    start_epoch = 0
    best_loss = float('inf')
    no_improve = 0

    # 断点续训
    if resume_path and os.path.exists(resume_path):
        checkpoint = torch.load(resume_path, map_location=device)
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        scheduler.load_state_dict(checkpoint['scheduler'])
        start_epoch = checkpoint['epoch'] + 1
        best_loss = checkpoint['best_loss']
        no_improve = checkpoint['no_improve']
        if scaler and 'scaler' in checkpoint:
            scaler.load_state_dict(checkpoint['scaler'])
        print(f"成功恢复训练状态,从第 {start_epoch} 轮开始")

    return {
        "device": device,
        "model": model,
        "optimizer": optimizer,
        "criterion": criterion,
        "scaler": scaler,
        "scheduler": scheduler,
        "start_epoch": start_epoch,
        "best_loss": best_loss,
        "no_improve": no_improve
    }


def train_epoch(model, device, train_loader, optimizer, criterion, scaler):
    """训练单个epoch"""
    model.train()
    total_loss = 0.0

    with tqdm(train_loader, desc="训练", unit="batch") as pbar:
        for images, labels in pbar:
            images = images.to(device, non_blocking=True)
            labels = labels.to(device, non_blocking=True)

            optimizer.zero_grad(set_to_none=True)

            # 混合精度训练
            with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu',
                                enabled=CONFIG["use_amp"]):
                outputs = model(images)
                loss = criterion(outputs, labels)

            # 反向传播
            if scaler:
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                loss.backward()
                optimizer.step()

            total_loss += loss.item() * images.size(0)
            pbar.set_postfix(loss=loss.item())

    return total_loss / len(train_loader.dataset)


def validate(model, device, val_loader, criterion):
    """验证循环"""
    model.eval()
    total_loss = 0.0

    with torch.no_grad(), tqdm(val_loader, desc="验证", unit="batch") as pbar:
        for images, labels in pbar:
            images = images.to(device, non_blocking=True)
            labels = labels.to(device, non_blocking=True)

            outputs = model(images)
            loss = criterion(outputs, labels)

            total_loss += loss.item() * images.size(0)
            pbar.set_postfix(loss=loss.item())

    return total_loss / len(val_loader.dataset)


def save_checkpoint(state, filename, is_best=False):
    """保存检查点"""
    os.makedirs(CONFIG["checkpoint_dir"], exist_ok=True)
    filepath = os.path.join(CONFIG["checkpoint_dir"], filename)

    # 保存完整状态
    torch.save(state, filepath)

    # 保存最佳模型
    if is_best:
        best_path = os.path.join(CONFIG["checkpoint_dir"], "model_best.pth")
        torch.save(state["model"], best_path)


def main():
    # 初始化
    train_loader, val_loader = create_data_loaders()
    training_env = initialize_training(CONFIG["resume"])

    # 解包训练环境
    device = training_env["device"]
    model = training_env["model"]
    optimizer = training_env["optimizer"]
    criterion = training_env["criterion"]
    scaler = training_env["scaler"]
    scheduler = training_env["scheduler"]
    start_epoch = training_env["start_epoch"]
    best_loss = training_env["best_loss"]
    no_improve = training_env["no_improve"]

    # 训练循环
    for epoch in range(start_epoch, CONFIG["num_epochs"]):
        print(f"\nEpoch {epoch + 1}/{CONFIG['num_epochs']}")
        start_time = time.time()

        # 训练与验证
        train_loss = train_epoch(model, device, train_loader, optimizer, criterion, scaler)
        val_loss = validate(model, device, val_loader, criterion)
        scheduler.step(val_loss)

        # 统计信息
        epoch_time = time.time() - start_time
        lr = optimizer.param_groups[0]['lr']
        print(f"耗时: {epoch_time // 60:.0f}m{epoch_time % 60:.0f}s | LR: {lr:.1e} | "
              f"训练损失: {train_loss:.4f} | 验证损失: {val_loss:.4f}")

        # 保存检查点
        is_best = val_loss < best_loss
        if is_best:
            best_loss = val_loss
            no_improve = 0
        else:
            no_improve += 1

        checkpoint = {
            'epoch': epoch,
            'model': model.state_dict(),
            'optimizer': optimizer.state_dict(),
            'scheduler': scheduler.state_dict(),
            'scaler': scaler.state_dict() if scaler else None,
            'best_loss': best_loss,
            'no_improve': no_improve,
            'config': CONFIG
        }

        # 定期保存
        if is_best or (epoch + 1) % CONFIG["checkpoint_interval"] == 0:
            save_checkpoint(checkpoint, f"epoch_{epoch + 1}.pth", is_best)

        # 保存最新检查点
        save_checkpoint(checkpoint, "latest.pth")

        # 早停机制
        if no_improve >= CONFIG["early_stop_patience"]:
            print(f"\n早停触发: 验证损失连续 {CONFIG['early_stop_patience']} 轮未提升")
            break


if __name__ == "__main__":
    # 命令行参数
    parser = argparse.ArgumentParser()
    parser.add_argument('--resume', help='恢复训练的检查点路径')
    args = parser.parse_args()

    if args.resume:
        CONFIG["resume"] = args.resume

    # 设置CUDA基准模式
    if torch.cuda.is_available():
        torch.backends.cudnn.benchmark = True

    # 启动训练
    main()

相关文章:

  • PostgreSQL 事务处理
  • AI大模型全攻略:原理 · 部署 · Prompt · 场景应用
  • AI本地部署之dify
  • 【LNMP】网站架构分布式部署
  • 智能体(Agent)入门,智能体构建方法、工具链与应用策略;大语言模型的本地化部署、优化
  • 【AI学习从零至壹】PyTorch模型训练相关要素
  • 亚马逊云科技全面托管DeepSeek-R1模型现已上线
  • 第二节第一部分:String字符串
  • 建库字符集选择`utf8mb4` + `utf8mb4_unicode_ci` 组合
  • 第三讲 | C/C++内存管理完全手册
  • 3. 轴指令(omron 机器自动化控制器)——>MC_CamIn
  • 在VMware17中安装使用Ubuntu虚拟机
  • 数据结构笔记
  • R语言结构方程模型(SEM)在生态学领域中的应用
  • 【HTML5】02-列表 + 表格 + 表单
  • 堆外内存 OOM:现象分析与优化方案
  • kubeval结合kube-score实现k8s yaml文件校验
  • 自动化测试【Python3.7+Selenium3】
  • langgraph简单Demo3(画一个简单的图)
  • “我是GM”之NAS搭建Luanti游戏服务器,开启沙盒游戏新体验
  • 只在上海!德国剧团新作亚洲首演:一张古典与流行的声音网络
  • 女儿被偷拍后,一个父亲的战斗
  • 重新认识中国女性|婚姻,古代传统家庭再生产的根本之道
  • 中国人民对外友好协会代表团访问美国
  • 合同约定拿850万保底利润?重庆市一中院:约定无效,发回重审
  • 政治局会议:创新推出债券市场的“科技板”,加快实施“人工智能+”行动