当前位置: 首页 > news >正文

4月18日复盘

4月18日复盘

一、深度学习概述

​ 传统机器学习算法依赖人工设计特征、提取特征,而深度学习依赖算法自动提取特征。深度学习模仿人类大脑的运行方式,从大量数据中学习特征,这也是深度学习被看做黑盒子、可解释性差的原因。
​ 随着算力的提升,深度学习可以处理图像,文本,音频,视频等各种内容,主要应用领域有:

  1. 图像处理:分类、目标检测、图像分割(语义分割)
  2. 自然语言处理:LLM、NLP、Transformer
  3. 语音识别:对话机器人、智能客服(语音+NLP)
  4. 自动驾驶:语义分割(行人、车辆、实线等)
  5. LLM:大Large语言Language模型Model
  6. 机器人:非常火的行业
    ​ 深度学习其实并不是新的事物,深度学习所需要的神经网络技术起源于20世纪50年代,叫做感知机。当时使用单层感知机,因为只能学习线性可分函数,连简单的异或(XOR)等线性不可分问题都无能为力,1969年Marvin Minsky写了一本叫做《Perceptrons》的书,他提出了著名的两个观点:1.单层感知机没用,我们需要多层感知机来解决复杂问题 2.没有有效的训练算法。
    ​ 20世纪80年代末期,用于人工神经网络的反向传播算法(也叫Back Propagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显出优越性。这个时候的人工神经网络,虽也被称作多层感知机(Multi-layer Perceptron),但实际是种只含有一层隐层节点的浅层模型。
    2006年,杰弗里·辛顿以及他的学生鲁斯兰·萨拉赫丁诺夫正式提出了深度学习的概念。
    2012年,在著名的ImageNet图像识别大赛中,杰弗里·辛顿领导的小组采用深度学习模型AlexNet一举夺冠。AlexNet采用ReLU激活函数,从根本上解决了梯度消失问题,并采用GPU极大的提高了模型的运算速度。
    同年,吴恩达教授和Jeff Dean主导的深度神经网络DNN技术在ImageNet评测中把错误率从26%降低到15%,再一次吸引了学术界和工业界对于深度学习领域的关注。
    2016年,随着谷歌公司基于深度学习开发的AlphaGo以4:1的比分战胜了国际顶尖围棋高手李世石,深度学习的热度一时无两。后来,AlphaGo又接连和众多世界级围棋高手过招,均取得了完胜。这也证明了在围棋界,基于深度学习技术的机器人已经超越了人类。
    2017年,基于强化学习算法的AlphaGo升级版AlphaGo Zero横空出世。其采用“从零开始”、“无师自通”的学习模式,以100:0的比分轻而易举打败了之前的AlphaGo。除了围棋,它还精通国际象棋等其它棋类游戏,可以说是真正的棋类“天才”。此外在这一年,深度学习的相关算法在医疗、金融、艺术、无人驾驶等多个领域均取得了显著的成果。所以,也有专家把2017年看作是深度学习甚至是人工智能发展最为突飞猛进的一年。
    2019年,基于Transformer 的自然语言模型的持续增长和扩散,这是一种语言建模神经网络模型,可以在几乎所有任务上提高NLP的质量。Google甚至将其用作相关性的主要信号之一,这是多年来最重要的更新。
    2020年,深度学习扩展到更多的应用场景,比如积水识别,路面塌陷等,而且疫情期间,在智能外呼系统,人群测温系统,口罩人脸识别等都有深度学习的应用。

二、神经网络

​ 我们要学习的深度学习(Deep Learning)是神经网络的一个子领域,主要关注更深层次的神经网络结构,也就是深层神经网络(Deep Neural Networks,DNNs)。所以,我们需要先搞清楚什么是神经网络!

1. 感知神经网络

神经网络(Neural Networks)是一种模拟人脑神经元网络结构的计算模型,用于处理复杂的模式识别、分类和预测等任务。生物神经元如下图:
在这里插入图片描述
生物学:

人脑可以看做是一个生物神经网络,由众多的神经元连接而成

  • 树突:从其他神经元接收信息的分支
  • 细胞核:处理从树突接收到的信息
  • 轴突:被神经元用来传递信息的生物电缆
  • 突触:轴突和其他神经元树突之间的连接

人脑神经元处理信息的过程:

  • 多个信号到达树突,然后整合到细胞体的细胞核中
  • 当积累的信号超过某个阈值,细胞就会被激活
  • 产生一个输出信号,由轴突传递。

神经网络由多个互相连接的节点(即人工神经元)组成。

2. 人工神经元

​ 人工神经元(Artificial Neuron)是神经网络的基本构建单元,模仿了生物神经元的工作原理。其核心功能是接收输入信号,经过加权求和和非线性激活函数处理后,输出结果。

2.1 构建人工神经元

人工神经元接受多个输入信息,对它们进行加权求和,再经过激活函数处理,最后将这个结果输出。

在这里插入图片描述

2.2 组成部分
  • 输入(Inputs): 代表输入数据,通常用向量表示,每个输入值对应一个权重。
  • 权重(Weights): 每个输入数据都有一个权重,表示该输入对最终结果的重要性。
  • 偏置(Bias): 一个额外的可调参数,作用类似于线性方程中的截距,帮助调整模型的输出。
  • 加权求和: 神经元将输入乘以对应的权重后求和,再加上偏置。
  • 激活函数(Activation Function): 用于将加权求和后的结果转换为输出结果,引入非线性特性,使神经网络能够处理复杂的任务。常见的激活函数有Sigmoid、ReLU(Rectified Linear Unit)、Tanh等。
2.3 数学表示

如果有 n 个输入 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn,权重分别为 w 1 , w 2 , … , w n w_1, w_2, \ldots, w_n w1,w2,,wn,偏置为 b b b,则神经元的输出 y y y 表示为:
z = ∑ i = 1 n w i ⋅ x i + b y = σ ( z ) z=\sum_{i=1}^nw_i\cdot x_i+b \\ y=\sigma(z) z=i=1nwixi+by=σ(z)
其中, σ ( z ) \sigma(z) σ(z) 是激活函数。

例如:

线性回归:
y = ∑ i = 1 n w i ⋅ x i + b y=\sum_{i=1}^nw_i\cdot x_i+b \\ y=i=1nwixi+b
线性回归不需要激活函数

逻辑回归:
z = ∑ i = 1 n w i ⋅ x i + b y = σ ( z ) = s i g m o i d ( z ) = 1 1 + e − z z=\sum_{i=1}^nw_i\cdot x_i+b \\ y=\sigma(z)=sigmoid(z)=\frac{1}{1+e^{-z}} z=i=1nwixi+by=σ(z)=sigmoid(z)=1+ez1

2.4 对比生物神经元

人工神经元和生物神经元对比如下表:

生物神经元人工神经元
细胞核节点 (加权求和 + 激活函数)
树突输入
轴突带权重的连接
突触输出

3. 深入神经网络

神经网络是由大量人工神经元按层次结构连接而成的计算模型。每一层神经元的输出作为下一层的输入,最终得到网络的输出。

3.1 基本结构

神经网络有下面三个基础层(Layer)构建而成:

  • 输入层(Input): 神经网络的第一层,负责接收外部数据,不进行计算。

  • 隐藏层(Hidden): 位于输入层和输出层之间,进行特征提取和转换。隐藏层一般有多层,每一层有多个神经元。

  • 输出层(Output): 网络的最后一层,产生最终的预测结果或分类结果

3.2 网络构建

我们使用多个神经元来构建神经网络,相邻层之间的神经元相互连接,并给每一个连接分配一个权重,经典如下:

在这里插入图片描述

注意:同一层的各个神经元之间是没有连接的。

3.3 全连接神经网络

前馈神经网络(Feedforward Neural Network,FNN)是一种最基本的神经网络结构,其特点是信息从输入层经过隐藏层单向传递到输出层,没有反馈或循环连接

全连接神经网络(Fully Connected Neural Network,FCNN)是前馈神经网络的一种,每一层的神经元与上一层的所有神经元全连接,常用于图像分类、文本分类等任务。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如上图,网络中每个神经元:
z 1 = x 1 ∗ w 1 + x 2 ∗ w 2 + b 1 z 2 = x 1 ∗ w 1 + x 2 ∗ w 2 + b 2 z 3 = x 1 ∗ w 1 + x 2 ∗ w 2 + b 3 z_1 = x_1*w_1 + x_2*w_2+b_1 \\ z_2 = x_1*w_1 + x_2*w_2+b_2 \\ z_3 = x_1*w_1 + x_2*w_2+b_3 z1=x1w1+x2w2+b1z2=x1w1+x2w2+b2z3=x1w1+x2w2+b3
说明:三个等式中的w1和w2在这里只是为了方便表示对应x1和x2的权重,实际三个等式中的w值是不同的。

向量x为: [ x 1 , x 2 ] [x_1,x_2] [x1,x2]

向量w: ( w 1 , w 2 w 1 , w 2 w 1 , w 2 ) \begin{pmatrix}w_1,w_2\\w_1,w_2\\w_1,w_2 \end{pmatrix} w1,w2w1,w2w1,w2 ,其形状为(3,2),3是神经元节点个数,2是向量x的个数

向量z: [ z 1 , z 2 , z 3 ] [z_1,z_2,z_3] [z1,z2,z3]

向量b: [ b 1 , b 2 , b 3 ] [b_1,b_2,b_3] [b1,b2,b3]

所以用向量表示为:
z = ( z 1 , z 2 , z 3 ) = ( x 1 , x 2 ) ( w 1 , w 1 , w 1 w 2 , w 2 , w 2 ) + ( b 1 , b 2 , b 3 ) = ( x 1 , x 2 ) ( w 1 , w 2 w 1 , w 2 w 1 , w 2 ) T + ( b 1 , b 2 , b 3 ) = x w T + b z = \begin{pmatrix}z_1,z_2,z_3 \end{pmatrix}=\begin{pmatrix}x_1,x_2 \end{pmatrix}\begin{pmatrix}w_1,w_1,w_1\\w_2,w_2,w_2\end{pmatrix}+\begin{pmatrix}b_1,b_2,b_3 \end{pmatrix}=\begin{pmatrix}x_1,x_2 \end{pmatrix}\begin{pmatrix}w_1,w_2\\w_1,w_2\\w_1,w_2 \end{pmatrix}^T + \begin{pmatrix}b_1,b_2,b_3 \end{pmatrix}=xw^T+b z=(z1,z2,z3)=(x1,x2)(w1,w1,w1w2,w2,w2)+(b1,b2,b3)=(x1,x2) w1,w2w1,w2w1,w2 T+(b1,b2,b3)=xwT+b

3.3.1 特点
  • 全连接层: 层与层之间的每个神经元都与前一层的所有神经元相连。
  • 权重数量: 由于全连接的特点,权重数量较大,容易导致计算量大、模型复杂度高。
  • 学习能力: 能够学习输入数据的全局特征,但对于高维数据却不擅长捕捉局部特征(如图像就需要CNN)。
3.3.2 计算步骤
  1. 数据传递: 输入数据经过每一层的计算,逐层传递到输出层。
  2. 激活函数: 每一层的输出通过激活函数处理。
  3. 损失计算: 在输出层计算预测值与真实值之间的差距,即损失函数值。
  4. 反向传播(Back Propagation): 通过反向传播算法计算损失函数对每个权重的梯度,并更新权重以最小化损失。
3.3.3 创建全连接神经网络

创建一个最基本的全连接神经网络(也称为多层感知机,MLP)通常需要以下步骤和方法:

  1. 定义网络结构
  • 输入层:确定输入数据的维度。例如,对于一个简单的图像分类任务,输入层的维度可能是图像的像素数量。
  • 隐藏层:定义一个或多个隐藏层,每个隐藏层包含一定数量的神经元。隐藏层的数量和每个隐藏层的神经元数量可以根据任务需求调整。
  • 输出层:根据任务目标确定输出层的神经元数量。例如,对于一个二分类问题,输出层通常有一个神经元;对于多分类问题,输出层的神经元数量等于类别数。
  1. 选择激活函数
  • 隐藏层激活函数:常用的激活函数有ReLU(Rectified Linear Unit)、Sigmoid、Tanh等。ReLU是最常用的激活函数,因为它可以有效缓解梯度消失问题。
  • 输出层激活函数:根据任务类型选择合适的激活函数。例如,对于二分类任务,输出层通常使用Sigmoid函数;对于多分类任务,输出层使用Softmax函数。
  1. 初始化权重和偏置
  • 权重初始化:权重的初始化方法对网络的训练效果有重要影响。常见的初始化方法包括随机初始化(如Xavier初始化或He初始化)和零初始化(通常不推荐,因为会导致梯度消失)。
  • 偏置初始化:偏置通常初始化为0或小的常数。
  1. 定义损失函数
  • 二分类任务:通常使用二元交叉熵损失函数(Binary Cross-Entropy Loss)。
  • 多分类任务:通常使用多类交叉熵损失函数(Categorical Cross-Entropy Loss)。
  • 回归任务:通常使用均方误差损失函数(Mean Squared Error, MSE)。
  1. 选择优化器
  • SGD(随机梯度下降):最简单的优化器,通过计算梯度来更新权重。
  • Adam:一种自适应学习率的优化器,结合了RMSprop和Momentum的优点,通常在训练深度神经网络时表现良好。
  • 其他优化器:如RMSprop、Adagrad等。
  1. 前向传播
  • 在前向传播过程中,输入数据通过每一层的线性变换(权重乘法和偏置加法)和非线性激活函数,最终得到输出结果。
  1. 计算损失
  • 使用定义的损失函数计算模型的输出与真实标签之间的差异。
  1. 反向传播
  • 通过计算损失函数对每个权重和偏置的梯度,利用链式法则反向传播这些梯度,更新网络的权重和偏置。
  1. 训练模型
  • 迭代地执行前向传播、计算损失和反向传播,直到模型的性能不再提升或达到预定的训练轮数。

示例:创建一个全连接神经网络,主要步骤包括:

  1. 定义模型结构。
  2. 初始化模型、损失函数和优化器。
  3. 准备数据。
  4. 训练模型。
  5. (可选)评估模型。

你可以根据实际任务调整网络结构、损失函数和优化器等。

import torch
from torch import nn
from torch import optim
from torch.nn import functional as Ftorch.manual_seed(42)# 定义全连接神经网络模型
class MyFcnn(nn.Module):def __init__(self, input_size):# 父类初始化super(MyFcnn, self).__init__()# 定义线性层1self.fc1 = nn.Linear(input_size, 64)# 初始化w权重nn.init.kaiming_uniform_(self.fc1.weight)# 初始化b偏置nn.init.zeros_(self.fc1.bias)# 定义线性层2,输入要和第一层的输出一致self.fc2 = nn.Linear(64, 32)# 初始化w权重nn.init.kaiming_uniform_(self.fc2.weight)# 初始化b偏置nn.init.zeros_(self.fc2.bias)# 定义线性层3,输入要和第二层的输出一致self.fc3 = nn.Linear(32, 1)# 初始化w权重nn.init.xavier_uniform_(self.fc3.weight)# 初始化b偏置nn.init.zeros_(self.fc3.bias)def forward(self, x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = F.sigmoid(self.fc3(x))return x# 初始化模型
input_size = 10
model = MyFcnn(input_size)
print(model)
# 定义损失函数
criterion = nn.BCELoss()
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.01)# 训练模型
def train():model.train()# 数据准备# 100个样本,每个样本10个特征x = torch.randn(100, input_size)# 随机生成二分类标签y = torch.randint(0, 2, (100, 1)).float()# 迭代次数epochs = 10for epoch in range(epochs):# 前向传播y_pred = model(x)# 计算损失loss = criterion(y_pred, y)# 梯度清零optimizer.zero_grad()# 反向传播loss.backward()# 更新梯度optimizer.step()# 打印训练信息print(f"Epoch [{epoch + 1}/{epochs}], Loss: {loss.item():.4f}")# 模型验证
X_test = torch.randn(20, input_size)  # 20个测试样本
y_test = torch.randint(0, 2, (20, 1)).float()  # 测试标签def eval():model.eval()with torch.no_grad():y_pred = model(X_test)y_pred = (y_pred > 0.5).float()accuracy = (y_pred == y_test).float().mean().item()print(f"Test Accuracy: {accuracy:.4f}")if __name__ == '__main__':train()eval()

三、 激活函数

激活函数的作用是在隐藏层引入非线性,使得神经网络能够学习和表示复杂的函数关系,使网络具备非线性能力,增强其表达能力。

1. 基础概念

通过认识线性和非线性的基础概念,深刻理解激活函数存在的价值。

1.1 线性理解

如果在隐藏层不使用激活函数,那么整个神经网络会表现为一个线性模型。我们可以通过数学推导来展示这一点。

假设:

  • 神经网络有 L L L 层,每层的输出为 a ( l ) \mathbf{a}^{(l)} a(l)
  • 每层的权重矩阵为 W ( l ) \mathbf{W}^{(l)} W(l),偏置向量为 b ( l ) \mathbf{b}^{(l)} b(l)
  • 输入数据为 x \mathbf{x} x,输出为 a ( L ) \mathbf{a}^{(L)} a(L)

一层网络的情况

对于单层网络(输入层到输出层),如果没有激活函数,输出 a ( 1 ) \mathbf{a}^{(1)} a(1) 可以表示为:
a ( 1 ) = W ( 1 ) x + b ( 1 ) \mathbf{a}^{(1)} = \mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} a(1)=W(1)x+b(1)

两层网络的情况

假设我们有两层网络,且每层都没有激活函数,则:

  • 第一层的输出: a ( 1 ) = W ( 1 ) x + b ( 1 ) \mathbf{a}^{(1)} = \mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} a(1)=W(1)x+b(1)
  • 第二层的输出: a ( 2 ) = W ( 2 ) a ( 1 ) + b ( 2 ) \mathbf{a}^{(2)} = \mathbf{W}^{(2)} \mathbf{a}^{(1)} + \mathbf{b}^{(2)} a(2)=W(2)a(1)+b(2)

a ( 1 ) \mathbf{a}^{(1)} a(1)代入到 a ( 2 ) \mathbf{a}^{(2)} a(2)中,可以得到:

a ( 2 ) = W ( 2 ) ( W ( 1 ) x + b ( 1 ) ) + b ( 2 ) \mathbf{a}^{(2)} = \mathbf{W}^{(2)} (\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)} a(2)=W(2)(W(1)x+b(1))+b(2)

a ( 2 ) = W ( 2 ) W ( 1 ) x + W ( 2 ) b ( 1 ) + b ( 2 ) \mathbf{a}^{(2)} = \mathbf{W}^{(2)} \mathbf{W}^{(1)} \mathbf{x} + \mathbf{W}^{(2)} \mathbf{b}^{(1)} + \mathbf{b}^{(2)} a(2)=W(2)W(1)x+W(2)b(1)+b(2)

我们可以看到,输出 a ( 2 ) \mathbf{a}^{(2)} a(2)是输入 x \mathbf{x} x的线性变换,因为: a ( 2 ) = W ′ x + b ′ \mathbf{a}^{(2)} = \mathbf{W}' \mathbf{x} + \mathbf{b}' a(2)=Wx+b
其中 W ′ = W ( 2 ) W ( 1 ) \mathbf{W}' = \mathbf{W}^{(2)} \mathbf{W}^{(1)} W=W(2)W(1) b ′ = W ( 2 ) b ( 1 ) + b ( 2 ) \mathbf{b}' = \mathbf{W}^{(2)} \mathbf{b}^{(1)} + \mathbf{b}^{(2)} b=W(2)b(1)+b(2)

多层网络的情况

如果有 L L L层,每层都没有激活函数,则第 l l l层的输出为: a ( l ) = W ( l ) a ( l − 1 ) + b ( l ) \mathbf{a}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)} a(l)=W(l)a(l1)+b(l)

通过递归代入,可以得到:
a ( L ) = W ( L ) W ( L − 1 ) ⋯ W ( 1 ) x + W ( L ) W ( L − 1 ) ⋯ W ( 2 ) b ( 1 ) + W ( L ) W ( L − 1 ) ⋯ W ( 3 ) b ( 2 ) + ⋯ + b ( L ) \mathbf{a}^{(L)} = \mathbf{W}^{(L)} \mathbf{W}^{(L-1)} \cdots \mathbf{W}^{(1)} \mathbf{x} + \mathbf{W}^{(L)} \mathbf{W}^{(L-1)} \cdots \mathbf{W}^{(2)} \mathbf{b}^{(1)} + \mathbf{W}^{(L)} \mathbf{W}^{(L-1)} \cdots \mathbf{W}^{(3)} \mathbf{b}^{(2)} + \cdots + \mathbf{b}^{(L)} a(L)=W(L)W(L1)W(1)x+W(L)W(L1)W(2)b(1)+W(L)W(L1)W(3)b(2)++b(L)
表达式可简化为:
a ( L ) = W ′ ′ x + b ′ ′ \mathbf{a}^{(L)} = \mathbf{W}'' \mathbf{x} + \mathbf{b}'' a(L)=W′′x+b′′
其中, W ′ ′ \mathbf{W}'' W′′ 是所有权重矩阵的乘积, b ′ ′ \mathbf{b}'' b′′是所有偏置项的线性组合。

如此可以看得出来,无论网络多少层,意味着:

整个网络就是线性模型,无法捕捉数据中的非线性关系。

激活函数是引入非线性特性、使神经网络能够处理复杂问题的关键。

1.2 非线性可视化

我们可以通过可视化的方式去理解非线性的拟合能力:https://playground.tensorflow.org/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2. 常见激活函数

激活函数通过引入非线性来增强神经网络的表达能力,对于解决线性模型的局限性至关重要。由于反向传播算法(BP)用于更新网络参数,因此激活函数必须是可微的,也就是说能够求导的。

2.1 sigmoid

Sigmoid激活函数是一种常见的非线性激活函数,特别是在早期神经网络中应用广泛。它将输入映射到0到1之间的值,因此非常适合处理概率问题。

2.1.1 公式

Sigmoid函数的数学表达式为:
f ( x ) = σ ( x ) = 1 1 + e − x f(x) = \sigma(x) = \frac{1}{1 + e^{-x}} f(x)=σ(x)=1+ex1
其中, e e e 是自然常数(约等于2.718), x x x 是输入。

2.1.2 特征
  1. 将任意实数输入映射到 (0, 1)之间,因此非常适合处理概率场景。

  2. sigmoid函数一般只用于二分类的输出层。

  3. 微分性质: 导数计算比较方便,可以用自身表达式来表示:
    σ ′ ( x ) = σ ( x ) ⋅ ( 1 − σ ( x ) ) \sigma'(x)=\sigma(x)\cdot(1-\sigma(x)) σ(x)=σ(x)(1σ(x))

2.1.3 缺点
  • 梯度消失:
    • 在输入非常大或非常小时,Sigmoid函数的梯度会变得非常小,接近于0。这导致在反向传播过程中,梯度逐渐衰减。
    • 最终使得早期层的权重更新非常缓慢,进而导致训练速度变慢甚至停滞。
  • 信息丢失:输入100和输入10000经过sigmoid的激活值几乎都是等于 1 的,但是输入的数据却相差 100 倍。
  • 计算成本高: 由于涉及指数运算,Sigmoid的计算比ReLU等函数更复杂,尽管差异并不显著。
2.1.4 函数绘制

通过代码实现函数和导函数绘制:

import torch
import matplotlib.pyplot as plt# plt支持中文
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = Falsedef test001():# 一行两列绘制图像_, ax = plt.subplots(1, 2)# 绘制函数图像x = torch.linspace(-10, 10, 100)y = torch.sigmoid(x)# 网格ax[0].grid(True)ax[0].set_title("sigmoid 函数曲线图")ax[0].set_xlabel("x")ax[0].set_ylabel("y")# 在第一行第一列绘制sigmoid函数曲线图ax[0].plot(x, y)# 绘制sigmoid导数曲线图x = torch.linspace(-10, 10, 100, requires_grad=True)# y = torch.sigmoid(x) * (1 - torch.sigmoid(x))# 自动求导torch.sigmoid(x).sum().backward()ax[1].grid(True)ax[1].set_title("sigmoid 函数导数曲线图", color="red")ax[1].set_xlabel("x")ax[1].set_ylabel("y")# ax[1].plot(x.detach().numpy(), y.detach())# 用自动求导的结果绘制曲线图ax[1].plot(x.detach().numpy(), x.grad.detach().numpy())# 设置曲线颜色ax[1].lines[0].set_color("red")plt.show()if __name__ == "__main__":test001()
2.2 tanh

tanh(双曲正切)是一种常见的非线性激活函数,常用于神经网络的隐藏层。tanh 函数也是一种S形曲线,输出范围为 ( − 1 , 1 ) (−1,1) (1,1)

2.2.1 公式

tanh数学表达式为:
t a n h ( x ) = e x − e − x e x + e − x {tanh}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} tanh(x)=ex+exexex

2.2.2 特征
  1. 输出范围: 将输入映射到 ( − 1 , 1 ) (-1, 1) (1,1)之间,因此输出是零中心的。相比于Sigmoid函数,这种零中心化的输出有助于加速收敛。

  2. 对称性: Tanh函数是关于原点对称的奇函数,因此在输入为0时,输出也为0。这种对称性有助于在训练神经网络时使数据更平衡。

  3. 平滑性: Tanh函数在整个输入范围内都是连续且可微的,这使其非常适合于使用梯度下降法进行优化。
    d d x tanh ( x ) = 1 − tanh 2 ( x ) \frac{d}{dx} \text{tanh}(x) = 1 - \text{tanh}^2(x) dxdtanh(x)=1tanh2(x)

2.2.3 缺点
  1. 梯度消失: 虽然一定程度上改善了梯度消失问题,但在输入值非常大或非常小时导数还是非常小,这在深层网络中仍然是个问题。这是因为每一层的梯度都会乘以一个小于1的值,经过多层乘积后,梯度会变得非常小,导致训练过程变得非常缓慢,甚至无法收敛。
  2. 计算成本: 由于涉及指数运算,Tanh的计算成本还是略高,尽管差异不大。
2.2.4 函数绘制

绘制代码:

import torch
import matplotlib.pyplot as plt# plt支持中文
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = Falsedef test001():# 一行两列绘制图像_, ax = plt.subplots(1, 2)# 绘制函数图像x = torch.linspace(-10, 10, 100)y = torch.tanh(x)# 网格ax[0].grid(True)ax[0].set_title("tanh 函数曲线图")ax[0].set_xlabel("x")ax[0].set_ylabel("y")# 在第一行第一列绘制tanh函数曲线图ax[0].plot(x, y)# 绘制tanh导数曲线图x = torch.linspace(-10, 10, 100, requires_grad=True)# y = torch.tanh(x) * (1 - torch.tanh(x))# 自动求导:需要标量才能反向传播torch.tanh(x).sum().backward()ax[1].grid(True)ax[1].set_title("tanh 函数导数曲线图", color="red")ax[1].set_xlabel("x")ax[1].set_ylabel("x.grad")# ax[1].plot(x.detach().numpy(), y.detach())# 用自动求导的结果绘制曲线图ax[1].plot(x.detach().numpy(), x.grad.detach().numpy())# 设置曲线颜色ax[1].lines[0].set_color("red")plt.show()if __name__ == "__main__":test001()
2.3 ReLU

ReLU(Rectified Linear Unit)是深度学习中最常用的激活函数之一,它的全称是修正线性单元。ReLU 激活函数的定义非常简单,但在实践中效果非常好。

2.3.1 公式

ReLU 函数定义如下:
ReLU ( x ) = max ⁡ ( 0 , x ) \text{ReLU}(x) = \max(0, x) ReLU(x)=max(0,x)

R e L U ReLU ReLU对输入 x x x进行非线性变换:
∙ 当  x > 0 时,ReLU ( x ) = x ∙ 当  x ≤ 0 时,ReLU ( x ) = 0 \bullet\quad\text{当 }x>0\text{ 时,ReLU}(x)=x\text{}\\\bullet\quad\text{当 }x\leq0\text{ 时,ReLU}(x)=0\text{}  x>0 ,ReLU(x)=x x0 ,ReLU(x)=0

2.3.2 特征
  1. 计算简单:ReLU 的计算非常简单,只需要对输入进行一次比较运算,这在实际应用中大大加速了神经网络的训练。

  2. ReLU 函数的导数是分段函数:
    ReLU ′ ( x ) = { 1 , if  x > 0 0 , if  x ≤ 0 \text{ReLU}'(x)=\begin{cases}1,&\text{if } x>0\\0,&\text{if }x\leq0\end{cases} ReLU(x)={1,0,if x>0if x0

  3. 缓解梯度消失问题:相比于 Sigmoid 和 Tanh 激活函数,ReLU 在正半区的导数恒为 1,这使得深度神经网络在训练过程中可以更好地传播梯度,不存在饱和问题。

  4. 稀疏激活:ReLU在输入小于等于 0 时输出为 0,这使得 ReLU 可以在神经网络中引入稀疏性(即一些神经元不被激活),这种稀疏性可以减少网络中的冗余信息,提高网络的效率和泛化能力。

2.3.3 缺点

神经元死亡:由于 R e L U ReLU ReLU x ≤ 0 x≤0 x0时输出为 0 0 0,如果某个神经元输入值是负,那么该神经元将永远不再激活,成为“死亡”神经元。随着训练的进行,网络中可能会出现大量死亡神经元,从而会降低模型的表达能力。

2.3.4 函数绘图

参考代码如下:

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt# 中文问题
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = Falsedef test006():# 输入数据xx = torch.linspace(-20, 20, 1000)y = F.relu(x)# 绘制一行2列_, ax = plt.subplots(1, 2)ax[0].plot(x.numpy(), y.numpy())# 显示坐标格子ax[0].grid()ax[0].set_title("relu 激活函数")ax[0].set_xlabel("x")ax[0].set_ylabel("y")# 绘制导数函数x = torch.linspace(-20, 20, 1000, requires_grad=True)F.relu(x).sum().backward()ax[1].plot(x.detach().numpy(), x.grad.numpy())ax[1].grid()ax[1].set_title("relu 激活函数导数", color="red")# 设置绘制线色颜色ax[1].lines[0].set_color("red")ax[1].set_xlabel("x")ax[1].set_ylabel("x.grad")plt.show()if __name__ == "__main__":test006()
2.4 LeakyReLU

Leaky ReLU是一种对 ReLU 函数的改进,旨在解决 ReLU 的一些缺点,特别是Dying ReLU 问题。Leaky ReLU 通过在输入为负时引入一个小的负斜率来改善这一问题。

2.4.1 公式

Leaky ReLU 函数的定义如下:
Leaky ReLU ( x ) = { x , if  x > 0 α x , if  x ≤ 0 \text{Leaky ReLU}(x)=\begin{cases}x,&\text{if } x>0\\\alpha x,&\text{if } x\leq0\end{cases} Leaky ReLU(x)={x,αx,if x>0if x0
其中, α \alpha α 是一个非常小的常数(如 0.01),它控制负半轴的斜率。这个常数 α \alpha α是一个超参数,可以在训练过程中可自行进行调整。

2.4.2 特征
  1. 避免神经元死亡:通过在 x ≤ 0 x\leq 0 x0 区域引入一个小的负斜率,这样即使输入值小于等于零,Leaky ReLU仍然会有梯度,允许神经元继续更新权重,避免神经元在训练过程中完全“死亡”的问题。
  2. 计算简单:Leaky ReLU 的计算与 ReLU 相似,只需简单的比较和线性运算,计算开销低。
2.4.3 缺点
  1. 参数选择: α \alpha α 是一个需要调整的超参数,选择合适的 α \alpha α 值可能需要实验和调优。
  2. 出现负激活:如果 α \alpha α 设定得不当,仍然可能导致激活值过低。
2.4.4 函数绘制

参考代码:

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt# 中文设置
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = Falsedef test006():x = torch.linspace(-5, 5, 200)# 设置leaky_relu的负斜率超参数slope = 0.03y = F.leaky_relu(x, slope)# 一行两列_, ax = plt.subplots(1, 2)# 开始绘制函数曲线图ax[0].plot(x, y)ax[0].set_title("Leaky ReLU 函数曲线图")ax[0].set_xlabel("x")ax[0].set_ylabel("y")ax[0].grid(True)# 绘制leaky_relu的梯度曲线图x = torch.linspace(-5, 5, 200, requires_grad=True)F.leaky_relu(x, slope).sum().backward()ax[1].plot(x.detach().numpy(), x.grad)ax[1].set_title("Leaky ReLU 梯度曲线图", color="red")ax[1].set_xlabel("x")ax[1].set_ylabel("x.grad")ax[1].grid(True)# 设置线的颜色ax[1].lines[0].set_color("red")plt.show()if __name__ == "__main__":test006()
2.5 softmax

Softmax激活函数通常用于分类问题的输出层,它能够将网络的输出转换为概率分布,使得输出的各个类别的概率之和为 1。Softmax 特别适合用于多分类问题。

2.5.1 公式

假设神经网络的输出层有 n n n个节点,每个节点的输入为 z i z_i zi,则 Softmax 函数的定义如下:
S o f t m a x ( z i ) = e z i ∑ j = 1 n e z j \mathrm{Softmax}(z_i)=\frac{e^{z_i}}{\sum_{j=1}^ne^{z_j}} Softmax(zi)=j=1nezjezi

给定输入向量 z = [ z 1 , z 2 , … , z n ] z=[z_1,z_2,…,z_n] z=[z1,z2,,zn]

1.指数变换:对每个 z i z_i zi进行指数变换,得到 t = [ e z 1 , e z 2 , . . . , e z n ] t = [e^{z_1},e^{z_2},...,e^{z_n}] t=[ez1,ez2,...,ezn],使z的取值区间从 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)变为 ( 0 , + ∞ ) (0,+\infty) (0,+)

2.将所有指数变换后的值求和,得到 s = e z 1 + e z 2 + . . . + e z n = Σ j = 1 n e z j s = e^{z_1} + e^{z_2} + ... + e^{z_n} = \Sigma_{j=1}^ne^{z_j} s=ez1+ez2+...+ezn=Σj=1nezj

3.将t中每个 e z i e^{z_i} ezi除以归一化因子s,得到概率分布:
s o f t m a x ( z ) = [ e z 1 s , e z 2 s , . . . , e z n s ] = [ e z 1 Σ j = 1 n e z j , e z 2 Σ j = 1 n e z j , . . . , e z n Σ j = 1 n e z j ] softmax(z) =[\frac{e^{z_1}}{s},\frac{e^{z_2}}{s},...,\frac{e^{z_n}}{s}]=[\frac{e^{z_1}}{\Sigma_{j=1}^ne^{z_j}},\frac{e^{z_2}}{\Sigma_{j=1}^ne^{z_j}},...,\frac{e^{z_n}}{\Sigma_{j=1}^ne^{z_j}}] softmax(z)=[sez1,sez2,...,sezn]=[Σj=1nezjez1,Σj=1nezjez2,...,Σj=1nezjezn]
即:
S o f t m a x ( z i ) = e z i ∑ j = 1 n e z j \mathrm{Softmax}(z_i)=\frac{e^{z_i}}{\sum_{j=1}^ne^{z_j}} Softmax(zi)=j=1nezjezi
从上述公式可以看出:

  1. 每个输出值在 (0,1)之间

  2. Softmax()对向量的值做了改变,但其位置不变

  3. 所有输出值之和为1,即

s u m ( s o f t m a x ( z ) ) = e z 1 s + e z 2 s + . . . + e z n s = s s = 1 sum(softmax(z)) =\frac{e^{z_1}}{s}+\frac{e^{z_2}}{s}+...+\frac{e^{z_n}}{s}=\frac{s}{s}=1 sum(softmax(z))=sez1+sez2+...+sezn=ss=1

2.5.2 特征
  1. 将输出转化为概率:通过 S o f t m a x Softmax Softmax,可以将网络的原始输出转化为各个类别的概率,从而可以根据这些概率进行分类决策。

  2. 概率分布: S o f t m a x Softmax Softmax的输出是一个概率分布,即每个输出值 Softmax ( z i ) \text{Softmax}(z_i) Softmax(zi)都是一个介于 0 0 0 1 1 1之间的数,并且所有输出值的和为 1:
    ∑ i = 1 n Softmax ( z i ) = 1 \sum_{i=1}^n\text{Softmax}(z_i)=1 i=1nSoftmax(zi)=1

  3. 突出差异: S o f t m a x Softmax Softmax会放大差异,使得概率最大的类别的输出值更接近 1 1 1,而其他类别更接近 0 0 0

  4. 在实际应用中, S o f t m a x Softmax Softmax常与交叉熵损失函数Cross-Entropy Loss结合使用,用于多分类问题。在反向传播中, S o f t m a x Softmax Softmax的导数计算是必需的。

设  p i = S o f t m a x ( z i ) ,则对于  z i 的导数为: ∙ 当  i = j 时: ∂ p i ∂ z i = e z i ( Σ j = 1 n e z j ) − e z i e z i ( Σ j = 1 n e z j ) 2 = p i ( 1 − p i ) ∙ 当  i ≠ j 时 : ∂ p i ∂ z j = 0 ( Σ j = 1 n e z j ) − e z i e z j ( Σ j = 1 n e z j ) 2 = − p i p j \begin{aligned} &\text{设 }p_i=\mathrm{Softmax}(z_i)\text{,则对于 }z_i\text{ 的导数为:} \\ &\bullet\text{ 当 }i=j\text{ 时:} \\ &&&\frac{\partial p_i}{\partial z_i}=\frac{e^{z_i}(\Sigma_{j=1}^ne^{z_j})-e^{z_i}e^{z_i}}{(\Sigma_{j=1}^ne^{z_j})^2}=p_i(1-p_i) \\ & \bullet\text{ 当 }i\neq j\text{ 时}: \\ &&&\frac{\partial p_i}{\partial z_j}=\frac{0(\Sigma_{j=1}^ne^{z_j})-e^{z_i}e^{z_j}}{(\Sigma_{j=1}^ne^{z_j})^2} =-p_{i}p_{j} \end{aligned}  pi=Softmax(zi),则对于 zi 的导数为:  i=j :  i=j :zipi=(Σj=1nezj)2ezi(Σj=1nezj)eziezi=pi(1pi)zjpi=(Σj=1nezj)20(Σj=1nezj)eziezj=pipj

2.5.3 缺点
  1. 数值不稳定性:在计算过程中,如果 z i z_i zi的数值过大, e z i e^{z_i} ezi可能会导致数值溢出。因此在实际应用中,经常会对 z i z_i zi进行调整,如减去最大值以确保数值稳定。

S o f t m a x ( z i ) = e z i − max ⁡ ( z ) ∑ j = 1 n e z j − max ⁡ ( z ) \mathrm{Softmax}(z_i)=\frac{e^{z_i-\max(z)}}{\sum_{j=1}^ne^{z_j-\max(z)}} Softmax(zi)=j=1nezjmax(z)ezimax(z)

解释:

z i − max ⁡ ( z ) z_i-\max(z) zimax(z)是一个非正数,由于 e z i − m a x ( z ) e^{z_i−max(z)} ezimax(z) 的形式,当 z i z_i zi 接近 max(z) 时, e z i − m a x ( z ) e^{z_i−max(z)} ezimax(z) 的值会接近 1,而当 z i z_i zi 远小于 max(z) 时, e z i − m a x ( z ) e^{z_i−max(z)} ezimax(z) 的值会接近 0。这使得 Softmax 函数的输出中,最大值对应的概率会相对较大,而其他值对应的概率会相对较小,从而提高数值稳定性。

这种调整不会改变 S o f t m a x Softmax Softmax的概率分布结果,因为从数学的角度讲相当于分子、分母都除以了 e max ⁡ ( z ) e^{\max(z)} emax(z)

在 PyTorch 中,torch.nn.functional.softmax 函数就自动处理了数值稳定性问题。

  1. 难以处理大量类别: S o f t m a x Softmax Softmax在处理类别数非常多的情况下(如大模型中的词汇表)计算开销会较大。
2.5.4 代码实现

代码参考如下:

import torch
import torch.nn as nn# 表示4分类,每个样本全连接后得到4个得分,下面示例模拟的是两个样本的得分
input_tensor = torch.tensor([[-1.0, 2.0, -3.0, 4.0], [-2, 3, -3, 9]])softmax = nn.Softmax()
output_tensor = softmax(input_tensor)
# 关闭科学计数法
torch.set_printoptions(sci_mode=False)
print("输入张量:", input_tensor)
print("输出张量:", output_tensor)

输出结果:

输入张量: tensor([[-1.,  2., -3.,  4.],[-2.,  3., -3.,  9.]])
输出张量: tensor([[    0.0059,     0.1184,     0.0008,     0.8749],[    0.0000,     0.0025,     0.0000,     0.9975]])

3. 如何选择

更多激活函数可以查看官方文档:https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

那这么多激活函数应该如何选择呢?实际没那么纠结

3.1 隐藏层
  1. 优先选ReLU;
  2. 如果ReLU效果不咋地,那么尝试其他激活,如Leaky ReLU等;
  3. 使用ReLU时注意神经元死亡问题, 避免出现过多神经元死亡;
  4. 不使用sigmoid,尝试使用tanh;
3.2 输出层
  1. 二分类问题选择sigmoid激活函数;
  2. 多分类问题选择softmax激活函数

相关文章:

  • 定时器复习DSP【2025/4/18】
  • datasheet数据手册-阅读方法
  • MMAction2安装
  • Docker安装hoppscotch
  • 什么是MMOE?
  • 【统计显著性检验】
  • 考研单词笔记 2025.04.18
  • openEuler系统下源码编译安装Nginx实践教程
  • 关于GPU的涡轮散热与被动散热
  • Fastapi 日志处理
  • 医学教育视频会议系统私有化部署方案
  • rLLM - 使LLM的强化学习民主化
  • 《软件设计师》复习笔记(11.3)——需求获取、分析、定义、验证、管理
  • 每日一题---移动零
  • C# 点击导入,将需要的参数传递到弹窗的页面
  • CTF--MD5
  • sqlite3的API以及命令行
  • RESTful API 全面指南:设计、原理与实践
  • Unity-微信截图功能简单复刻-03绘制空心矩形
  • 【软件工程】用飞书画各种图(流程图,架构图···)
  • 卡洛·金茨堡:女巫与萨满——我的学术之路
  • 生于1984年,郭宝任湖北黄石市副市长
  • 西北政法大学推无手机课堂,有学生称要求全交,学校:并非强制
  • 牛市早报|李强:在一些关键的时间窗口,推动各方面政策措施早出手、快出手
  • 美国佛罗里达州立大学发生枪击事件
  • 郑州一废弃饭店堆砌物起火:明火被扑灭,未造成人员伤亡