P5670 秘籍-反复异或 Solution
Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an) 和常数 m m m,有 q q q 个操作分两种:
- add ( l , r , x ) \operatorname{add}(l,r,x) add(l,r,x):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← a i + x a_i\gets a_i+x ai←ai+x.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 ( xor i = l r a i ) m o d 2 m (\mathop{\operatorname{xor}}\limits_{i=l}^ra_i)\bmod 2^m (i=lxorrai)mod2m.
Limitations
1 ≤ n , q ≤ 1 0 5 1 \le n,q \le 10^5 1≤n,q≤105
1 ≤ m ≤ 10 \textcolor{red}{1\le m \le 10} 1≤m≤10
0 ≤ a i , x < 2 m 0\le a_i,x<2^m 0≤ai,x<2m
0.5 s , 256 MB \textcolor{red}{0.5\text{s}},256\text{MB} 0.5s,256MB
Solution
m m m 很小,考虑基于值域的做法.
由于异或性质,我们只用维护一个数出现次数奇偶性,这可以压在一个 1024 1024 1024 位的 bitset
f f f 里,第 i i i 位表示 i i i 的出现次数奇偶性.
那么合并就是将两个 bitset
xor \operatorname{xor} xor 起来.
区间加 x x x 就是将 f f f 循环左移 x x x 次,可以写作 f = (f >> (1024 - x)) | (f << x)
.
显然可用线段树维护,记得卡常.
Code
4.63 KB , 2.79 s , 55.88 MB (in total, C++20 with O2) 4.63\text{KB},2.79\text{s},55.88\text{MB}\;\texttt{(in total, C++20 with O2)} 4.63KB,2.79s,55.88MB(in total, C++20 with O2)
fastio
和 lazy_segment
删了.
#include <bits/stdc++.h>
using namespace std;using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;template<class T>
bool chmax(T &a, const T &b){if(a < b){ a = b; return true; }return false;
}template<class T>
bool chmin(T &a, const T &b){if(a > b){ a = b; return true; }return false;
}namespace fastio {} // Removedusing fastio::read;
using fastio::write;template<class Info, class Tag>
struct lazy_segment{}; // Removedconstexpr int B = 1024, mask = 1023;struct Tag {int tag;inline Tag() : tag(0) {}inline Tag(int _tag) : tag(_tag) {}inline void apply(const Tag& t) { tag += t.tag; tag &= mask; }
};struct Info {bitset<B> bs;inline Info() {}inline Info(int x) { bs.reset(); bs[x] = 1; }inline void apply(const Tag& t) {bs = (bs >> (B - t.tag)) | (bs << t.tag);}
};inline Info operator+(const Info& lhs, const Info& rhs) {Info res;res.bs = lhs.bs ^ rhs.bs;return res;
}signed main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);const int n = read<int>(), m = read<int>(), q = read<int>();vector<int> a(n);for (int i = 0; i < n; i++) a[i] = read<int>();lazy_segment<Info, Tag> sgt(a);for (int i = 0, op, l, r; i < q; i++) {op = read<int>(), l = read<int>(), r = read<int>();l--, r--;if (op == 1) sgt.apply(l, r, read<int>());else {auto bs = sgt.query(l, r).bs;int ans = 0;for (int i = 0; i < B; i++) ans ^= bs[i] * i;write(ans & ((1 << m) - 1));putchar_unlocked('\n');}}return 0;
}