双极坐标系的面积元
本文的推导过程不是用极为简便的主流方法,仅供参考。
参考数学百科_双极坐标系。
本文发布于csdn和知乎,除此之外不做发表。
标记
记
d ( F 1 , F 2 ) = r d(F_1,F_2)=r d(F1,F2)=r
d ( F 1 , P ) = r 1 d(F_1,P)=r_1 d(F1,P)=r1
d ( F 2 , P ) = r 2 d(F_2,P)=r_2 d(F2,P)=r2
cos θ ( r 1 , r 2 ) = r 1 2 + r 2 2 − r 2 2 r 1 r 2 \cos{\theta(r1,r_2)}=\frac{r_1^2+r_2^2-r^2}{2r_1r_2} cosθ(r1,r2)=2r1r2r12+r22−r2
cos θ 1 ( r 1 , r 2 ) = r 2 + r 1 2 − r 2 2 2 r r 1 \cos{\theta_1(r_1,r_2)}=\frac{r^2 + r_1^2 - r_2^2}{2rr_1} cosθ1(r1,r2)=2rr1r2+r12−r22
cos θ 2 ( r 1 , r 2 ) = r 2 + r 2 2 − r 1 2 2 r r 2 \cos{\theta_2(r_1,r_2)}=\frac{r^2 + r_2^2 - r_1^2}{2rr_2} cosθ2(r1,r2)=2rr2r2+r22−r12
x 1 ( r 1 , r 2 ) = r 2 + r 1 2 − r 2 2 2 r x_1(r_1,r_2)=\frac{r ^ 2 + r_1^2 - r_2^2}{2r} x1(r1,r2)=2rr2+r12−r22
x 2 ( r 1 , r 2 ) = r 2 + r 2 2 − r 1 2 2 r x_2(r_1,r_2)=\frac{r^2 + r_2^2 - r_1^2}{2r} x2(r1,r2)=2rr2+r22−r12
请注意, − x 2 = x 1 − r -x_2=x_1-r −x2=x1−r
若无说明,则状态默认为 ( r 1 , r 2 ) (r_1,r_2) (r1,r2)。
另记
S = 1 4 r 2 ( − r 2 + r 1 2 + r 2 2 ) + r 1 2 ( r 2 − r 1 2 + r 2 2 ) + r 2 2 ( r 2 + r 1 2 − r 2 2 ) S=\frac{1}{4}\sqrt{r^2(-r^2+r_1^2+r_2^2)+r_1^2(r^2-r_1^2+r_2^2)+r_2^2(r^2+r_1^2-r_2^2)} S=41r2(−r2+r12+r22)+r12(r2−r12+r22)+r22(r2+r12−r22)
思路
给 r 1 r_1 r1和 r 2 r_2 r2增量,求出如图所示的空出面积即可。
完整的过程
注意到,
d S dS dS
= ∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x =\int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx =∫x1(r1,r2)x1(r1,r2+dr2)r12−x2dx
+ ∫ x 1 ( r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 + d r 2 ) ( r 2 + d r 2 ) 2 − ( x − r ) 2 d x +\int_{x_1(r_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2+dr_2)} \sqrt{(r_2+dr_2)^2-(x-r)^2}dx +∫x1(r1,r2+dr2)x1(r1+dr1,r2+dr2)(r2+dr2)2−(x−r)2dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x +\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx +∫x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2−x2dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 ) x 1 ( r 1 , r 2 ) r 2 2 − ( x − r ) 2 d x +\int_{x_1(r_1+dr_1,r_2)}^{x_1(r_1,r_2)} \sqrt{r_2^2-(x-r)^2}dx +∫x1(r1+dr1,r2)x1(r1,r2)r22−(x−r)2dx
= ∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x =\int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx =∫x1(r1,r2)x1(r1,r2+dr2)r12−x2dx
+ ∫ x 1 ( r 1 , r 2 + d r 2 ) − r x 1 ( r 1 + d r 1 , r 2 + d r 2 ) − r ( r 2 + d r 2 ) 2 − x 2 d x +\int_{x_1(r_1,r_2+dr_2)-r}^{x_1(r_1+dr_1,r_2+dr_2)-r} \sqrt{(r_2+dr_2)^2-x^2}dx +∫x1(r1,r2+dr2)−rx1(r1+dr1,r2+dr2)−r(r2+dr2)2−x2dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x +\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx +∫x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2−x2dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 ) − r x 1 ( r 1 , r 2 ) − r r 2 2 − x 2 d x +\int_{x_1(r_1+dr_1,r_2)-r}^{x_1(r_1,r_2)-r} \sqrt{r_2^2-x^2}dx +∫x1(r1+dr1,r2)−rx1(r1,r2)−rr22−x2dx
= ∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x =\int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx =∫x1(r1,r2)x1(r1,r2+dr2)r12−x2dx
− ∫ x 2 ( r 1 , r 2 + d r 2 ) x 2 ( r 1 + d r 1 , r 2 + d r 2 ) ( r 2 + d r 2 ) 2 − x 2 d x -\int_{x_2(r_1,r_2+dr_2)}^{x_2(r_1+dr_1,r_2+dr_2)} \sqrt{(r_2+dr_2)^2-x^2}dx −∫x2(r1,r2+dr2)x2(r1+dr1,r2+dr2)(r2+dr2)2−x2dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x +\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx +∫x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2−x2dx
− ∫ x 2 ( r 1 + d r 1 , r 2 ) x 2 ( r 1 , r 2 ) r 2 2 − x 2 d x -\int_{x_2(r_1+dr_1,r_2)}^{x_2(r_1,r_2)} \sqrt{r_2^2-x^2}dx −∫x2(r1+dr1,r2)x2(r1,r2)r22−x2dx
= ( ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x + ∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x ) =(\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx+\int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx) =(∫x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2−x2dx+∫x1(r1,r2)x1(r1,r2+dr2)r12−x2dx)
− ( ∫ x 2 ( r 1 + d r 1 , r 2 ) x 2 ( r 1 , r 2 ) r 2 2 − x 2 d x + ∫ x 2 ( r 1 , r 2 + d r 2 ) x 2 ( r 1 + d r 1 , r 2 + d r 2 ) ( r 2 + d r 2 ) 2 − x 2 d x ) -(\int_{x_2(r_1+dr_1,r_2)}^{x_2(r_1,r_2)} \sqrt{r_2^2-x^2}dx+\int_{x_2(r_1,r_2+dr_2)}^{x_2(r_1+dr_1,r_2+dr_2)} \sqrt{(r_2+dr_2)^2-x^2}dx) −(∫x2(r1+dr1,r2)x2(r1,r2)r22−x2dx+∫x2(r1,r2+dr2)x2(r1+dr1,r2+dr2)(r2+dr2)2−x2dx)
= ( + ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x =(+\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx =(+∫x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2−x2dx
− ∫ x 1 ( r 1 , r 2 + d r 2 ) x 1 ( r 1 , r 2 ) r 1 2 − x 2 d x ) -\int_{x_1(r_1,r_2+dr_2)}^{x_1(r_1,r_2)} \sqrt{r_1^2-x^2}dx) −∫x1(r1,r2+dr2)x1(r1,r2)r12−x2dx)
+ ( + ∫ x 2 ( r 1 + d r 1 , r 2 + d r 2 ) x 2 ( r 1 , r 2 + d r 2 ) ( r 2 + d r 2 ) 2 − x 2 d x +(+\int_{x_2(r_1+dr_1,r_2+dr_2)}^{x_2(r_1,r_2+dr_2)} \sqrt{(r_2+dr_2)^2-x^2}dx +(+∫x2(r1+dr1,r2+dr2)x2(r1,r2+dr2)(r2+dr2)2−x2dx
− ∫ x 2 ( r 1 + d r 1 , r 2 ) x 2 ( r 1 , r 2 ) r 2 2 − x 2 d x ) -\int_{x_2(r_1+dr_1,r_2)}^{x_2(r_1,r_2)} \sqrt{r_2^2-x^2}dx) −∫x2(r1+dr1,r2)x2(r1,r2)r22−x2dx)
= d r 1 ⋅ ∂ ∂ r 1 ⋅ ∫ x 1 ( r 1 , r 2 + d r 2 ) x 1 ( r 1 , r 2 ) r 1 2 − x 2 d x =dr_1 \cdot \frac{\partial}{\partial r_1} \cdot \int_{x_1(r_1,r_2+dr_2)}^{x_1(r_1,r_2)} \sqrt{r_1^2-x^2}dx =dr1⋅∂r1∂⋅∫x1(r1,r2+dr2)x1(r1,r2)r12−x2dx
+ d r 2 ⋅ ∂ ∂ r 2 ⋅ ∫ x 2 ( r 1 + d r 1 , r 2 ) x 2 ( r 1 , r 2 ) r 2 2 − x 2 d x +dr_2 \cdot \frac{\partial}{\partial r_2} \cdot \int_{x_2(r_1+dr_1,r_2)}^{x_2(r_1,r_2)} \sqrt{r_2^2-x^2}dx +dr2⋅∂r2∂⋅∫x2(r1+dr1,r2)x2(r1,r2)r22−x2dx
这里有两个对称的项,只要算出来一个即可。
∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x \int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx ∫x1(r1,r2)x1(r1,r2+dr2)r12−x2dx
= r 1 2 2 ( arcsin x 1 ( r 1 , r 2 + d r 2 ) r 1 − arcsin x 2 ( r 1 , r 2 ) r 1 ) =\frac{r_1^ 2}{2}(\arcsin\frac{x_1(r_1,r_2+dr_2)}{r_1}-\arcsin\frac{x_2(r_1,r_2)}{r_1}) =2r12(arcsinr1x1(r1,r2+dr2)−arcsinr1x2(r1,r2))
+ ( x 1 ( r 1 , r 2 + d r 2 ) 2 r 1 2 − x 1 2 ( r 1 , r 2 + d r 2 ) − x 1 ( r 1 , r 2 ) 2 r 1 2 − x 1 2 ( r 1 , r 2 ) ) +(\frac{x_1(r_1,r_2+dr_2)}{2}\sqrt{r_1^2-x_1^2(r_1,r_2+dr_2)}-\frac{x_1(r_1,r_2)}{2}\sqrt{r_1^2-x_1^2(r_1,r_2)}) +(2x1(r1,r2+dr2)r12−x12(r1,r2+dr2)−2x1(r1,r2)r12−x12(r1,r2))
= r 1 2 2 ( =\frac{r_1^2}{2}( =2r12(
( arcsin cos θ 1 ( r 1 , r 2 + d r 2 ) − arcsin cos θ 1 ( r 1 , r 2 ) ) (\arcsin \cos \theta_1 (r_1,r_2+dr_2)-\arcsin \cos \theta_1 (r_1,r_2)) (arcsincosθ1(r1,r2+dr2)−arcsincosθ1(r1,r2))
+ 1 2 ⋅ ( sin 2 θ 1 ( r 1 , r 2 + d r 2 ) − sin 2 θ 1 ( r 1 , r 2 ) ) +\frac{1}{2} \cdot (\sin 2 \theta_1 (r_1,r_2+dr_2) - \sin 2 \theta_1(r_1,r_2)) +21⋅(sin2θ1(r1,r2+dr2)−sin2θ1(r1,r2))
) ) )
= d r 2 r 1 2 2 ∂ ∂ r 2 ( arcsin cos θ 1 + 1 2 ⋅ ( sin 2 θ 1 ) ) =dr_2\frac{r_1^2}{2} \frac{\partial}{\partial r_2} (\arcsin \cos \theta_1 +\frac{1}{2} \cdot (\sin 2 \theta_1)) =dr22r12∂r2∂(arcsincosθ1+21⋅(sin2θ1))
= d r 2 r 1 2 2 ( =dr_2\frac{r_1^2}{2}( =dr22r12(
∂ arcsin cos θ 1 ∂ cos θ 1 ∂ cos θ 1 ∂ r 2 \frac{\partial \arcsin \cos \theta_1 }{\partial \cos \theta_1 }\frac{\partial \cos \theta_1}{\partial r_2} ∂cosθ1∂arcsincosθ1∂r2∂cosθ1
+ 1 2 ∂ sin 2 θ 1 ∂ 2 θ 1 ∂ 2 θ 1 ∂ θ 1 ( ∂ cos θ 1 ∂ θ 1 ) − 1 ∂ cos θ 1 ∂ r 2 +\frac{1}{2}{\frac{\partial \sin 2 \theta_1 }{\partial 2 \theta_1 }\frac{\partial 2 \theta_1}{\partial \theta_1}(\frac{\partial \cos \theta_1}{\partial \theta_1})^{-1}\frac{\partial \cos \theta_1}{\partial r_2}} +21∂2θ1∂sin2θ1∂θ1∂2θ1(∂θ1∂cosθ1)−1∂r2∂cosθ1
) ) )
= d r 2 r 1 2 2 ( =dr_2\frac{r_1^2}{2}( =dr22r12(
∂ arcsin cos θ 1 ∂ cos θ 1 ∂ r 2 + r 1 2 − r 2 2 2 r r 1 ∂ r 2 \frac{\partial \arcsin \cos \theta_1}{\partial \cos \theta_1 }\frac{\partial \frac{r^2 + r_1^2 - r_2^2}{2rr_1}}{\partial r_2} ∂cosθ1∂arcsincosθ1∂r2∂2rr1r2+r12−r22
+ 1 2 ∂ sin 2 θ 1 ∂ 2 θ 1 ∂ 2 θ 1 ∂ θ 1 ( ∂ cos θ 1 ∂ θ 1 ) − 1 ∂ r 2 + r 1 2 − r 2 2 2 r r 1 ∂ r 2 +\frac{1}{2}{\frac{\partial \sin 2 \theta_1 }{\partial 2 \theta_1 }\frac{\partial 2 \theta_1}{\partial \theta_1}(\frac{\partial \cos \theta_1 }{\partial \theta_1})^{-1}\frac{\partial \frac{r^2 + r_1^2 - r_2^2}{2rr_1}}{\partial r_2}} +21∂2θ1∂sin2θ1∂θ1∂2θ1(∂θ1∂cosθ1)−1∂r2∂2rr1r2+r12−r22
) ) )
= d r 2 r 1 2 2 ( =dr_2\frac{r_1^2}{2}( =dr22r12(
1 sin θ 1 − 2 r 2 2 r r 1 \frac{1}{\sin \theta_1} \frac{ - 2r_2}{2rr_1} sinθ112rr1−2r2
+ 1 2 cos 2 θ 1 2 1 sin θ 1 − 2 r 2 2 r r 1 +\frac{1}{2} \cos 2 \theta_12\frac{1}{\sin \theta_1}\frac{ - 2r_2}{2rr_1} +21cos2θ12sinθ112rr1−2r2
) ) )
= d r 2 − r 1 2 2 r 2 r r 1 1 sin θ 1 ( 1 + cos 2 θ 1 ) =dr_2-\frac{r_1^2}{2}\frac{r_2}{rr_1}\frac{1}{\sin \theta_1}(1+ \cos 2 \theta_1) =dr2−2r12rr1r2sinθ11(1+cos2θ1)
= d r 2 − r 1 2 2 r 2 r r 1 1 sin θ 1 2 sin 2 θ 1 =dr_2-\frac{r_1^2}{2}\frac{r_2}{rr_1}\frac{1}{\sin \theta_1 }2\sin^2\theta_1 =dr2−2r12rr1r2sinθ112sin2θ1
= d r 2 − r 1 r 2 r sin θ 1 =dr_2-\frac{r_1r_2}{r}\sin\theta_1 =dr2−rr1r2sinθ1
则
∂ ∂ r 1 ⋅ ∫ x 1 ( r 1 , r 2 + d r 2 ) x 1 ( r 1 , r 2 ) r 1 2 − x 2 d x \frac{\partial}{\partial r_1} \cdot \int_{x_1(r_1,r_2+dr_2)}^{x_1(r_1,r_2)} \sqrt{r_1^2-x^2}dx ∂r1∂⋅∫x1(r1,r2+dr2)x1(r1,r2)r12−x2dx
= d r 2 ∂ ∂ r 1 ⋅ r 1 r 2 r sin θ 1 =dr_2\frac{\partial}{\partial r_1} \cdot \frac{r_1r_2}{r}\sin\theta_1 =dr2∂r1∂⋅rr1r2sinθ1
= d r 2 r 2 r ∂ r 1 sin θ 1 ∂ r 1 =dr_2\frac{r_2}{r} \frac{\partial r_1\sin\theta_1}{\partial r_1} =dr2rr2∂r1∂r1sinθ1
= d r 2 r 2 r ( sin θ 1 + r 1 ∂ sin θ 1 ∂ θ 1 ( ∂ cos θ 1 ∂ θ 1 ) − 1 ∂ cos θ 1 ∂ r 1 ) =dr_2\frac{r_2}{r} (\sin\theta_1+r_1\frac{\partial \sin\theta_1}{\partial\theta_1}(\frac{\partial \cos\theta_1}{\partial \theta_1})^{-1}\frac{\partial \cos\theta_1}{\partial r_1}) =dr2rr2(sinθ1+r1∂θ1∂sinθ1(∂θ1∂cosθ1)−1∂r1∂cosθ1)
= d r 2 r 2 r ( sin θ 1 + r 1 ∂ sin θ 1 ∂ θ 1 ( ∂ cos θ 1 ∂ θ 1 ) − 1 ∂ r 2 + r 1 2 − r 2 2 2 r r 1 ∂ r 1 ) =dr_2\frac{r_2}{r} (\sin\theta_1+r_1\frac{\partial \sin\theta_1}{\partial\theta_1}(\frac{\partial \cos\theta_1}{\partial \theta_1})^{-1}\frac{\partial \frac{r^2 + r_1^2 - r_2^2}{2rr_1}}{\partial r_1}) =dr2rr2(sinθ1+r1∂θ1∂sinθ1(∂θ1∂cosθ1)−1∂r1∂2rr1r2+r12−r22)
= d r 2 r 2 r ( sin θ 1 + r 1 ∂ sin θ 1 ∂ θ 1 ( ∂ cos θ 1 ∂ θ 1 ) − 1 ( 2 r r 1 ) ⋅ ∂ ∂ r 1 ( r 2 + r 1 2 − r 2 2 ) − ( r 2 + r 1 2 − r 2 2 ) ⋅ ∂ ∂ r 1 ( 2 r r 1 ) ( 2 r r 1 ) 2 =dr_2\frac{r_2}{r} (\sin\theta_1+r_1\frac{\partial \sin\theta_1}{\partial\theta_1}(\frac{\partial \cos\theta_1}{\partial \theta_1})^{-1}\frac{(2rr_1) \cdot \frac{\partial}{\partial r_1}(r^2 + r_1^2 - r_2^2) - (r^2 + r_1^2 - r_2^2) \cdot \frac{\partial}{\partial r_1}(2rr_1)}{(2rr_1)^2} =dr2rr2(sinθ1+r1∂θ1∂sinθ1(∂θ1∂cosθ1)−1(2rr1)2(2rr1)⋅∂r1∂(r2+r12−r22)−(r2+r12−r22)⋅∂r1∂(2rr1)
= d r 2 r 2 r ( sin θ 1 + r 1 cos θ 1 1 sin θ 1 r 1 2 + r 2 2 − r 2 2 r r 1 2 ) =dr_2\frac{r_2}{r} (\sin\theta_1+r_1 \cos\theta_1\frac{1}{ \sin\theta_1 }\frac{r_1^2 + r_2^2 - r^2}{2rr_1^2}) =dr2rr2(sinθ1+r1cosθ1sinθ112rr12r12+r22−r2)
= d r 2 r 2 r ( sin θ 1 + cot θ 1 cos θ r 2 r ) =dr_2\frac{r_2}{r} (\sin\theta_1+\cot\theta_1\cos\theta\frac{r_2}{r}) =dr2rr2(sinθ1+cotθ1cosθrr2)
代入到原式。
d S dS dS
= d r 1 d r 2 ( r 2 sin θ 1 + r 1 sin θ 2 r + cos θ r 2 ( r 2 2 cot θ 1 + r 1 2 cot θ 2 ) ) =dr_1dr_2(\frac{r_2\sin\theta_1+r_1\sin\theta_2}{r}+\frac{\cos\theta}{r^2}(r_2^2\cot\theta_1+r_1^2\cot\theta_2)) =dr1dr2(rr2sinθ1+r1sinθ2+r2cosθ(r22cotθ1+r12cotθ2))
= d r 1 d r 2 r 2 ( S 2 ( r 2 r 1 + r 1 r 2 ) + r ( r 1 2 + r 2 2 − r 2 ) 4 S ( r 1 + r 2 ) ) =\frac{dr_1dr_2}{r^2}(\frac{S}{2}(\frac{r_2}{r_1}+\frac{r_1}{r_2})+\frac{r(r_1^2+r_2^2-r^2)}{4S}(r_1+r_2)) =r2dr1dr2(2S(r1r2+r2r1)+4Sr(r12+r22−r2)(r1+r2))
这与学术界的结论不一致,也与之前自己推的结果不一致,但暂时不知道哪里算错了。
在之前计算过这样一个结果,可惜草稿纸找不到了。
记
F = r 2 + r 1 2 + r 2 2 F=r^2+r_1^2+r_2^2 F=r2+r12+r22
H = r 4 + r 1 4 + r 2 4 H=r^4+r_1^4+r_2^4 H=r4+r14+r24
有
d S = d r 1 d r 2 ( F − r 2 ) ( F 2 − 2 H + F ) − 2 ( H − r 4 ) 2 r 2 r 1 r 2 dS=dr_1dr_2\frac{(F-r^2)(\sqrt{F^2-2H}+F)-2(H-r4)}{2r^2r_1r_2} dS=dr1dr22r2r1r2(F−r2)(F2−2H+F)−2(H−r4)