当前位置: 首页 > news >正文

双极坐标系的面积元

本文的推导过程不是用极为简便的主流方法,仅供参考。
参考数学百科_双极坐标系。
双极坐标系的定义
本文发布于csdn和知乎,除此之外不做发表。


标记


d ( F 1 , F 2 ) = r d(F_1,F_2)=r d(F1,F2)=r
d ( F 1 , P ) = r 1 d(F_1,P)=r_1 d(F1,P)=r1
d ( F 2 , P ) = r 2 d(F_2,P)=r_2 d(F2,P)=r2
cos ⁡ θ ( r 1 , r 2 ) = r 1 2 + r 2 2 − r 2 2 r 1 r 2 \cos{\theta(r1,r_2)}=\frac{r_1^2+r_2^2-r^2}{2r_1r_2} cosθ(r1,r2)=2r1r2r12+r22r2
cos ⁡ θ 1 ( r 1 , r 2 ) = r 2 + r 1 2 − r 2 2 2 r r 1 \cos{\theta_1(r_1,r_2)}=\frac{r^2 + r_1^2 - r_2^2}{2rr_1} cosθ1(r1,r2)=2rr1r2+r12r22
cos ⁡ θ 2 ( r 1 , r 2 ) = r 2 + r 2 2 − r 1 2 2 r r 2 \cos{\theta_2(r_1,r_2)}=\frac{r^2 + r_2^2 - r_1^2}{2rr_2} cosθ2(r1,r2)=2rr2r2+r22r12
x 1 ( r 1 , r 2 ) = r 2 + r 1 2 − r 2 2 2 r x_1(r_1,r_2)=\frac{r ^ 2 + r_1^2 - r_2^2}{2r} x1(r1,r2)=2rr2+r12r22
x 2 ( r 1 , r 2 ) = r 2 + r 2 2 − r 1 2 2 r x_2(r_1,r_2)=\frac{r^2 + r_2^2 - r_1^2}{2r} x2(r1,r2)=2rr2+r22r12
请注意, − x 2 = x 1 − r -x_2=x_1-r x2=x1r
若无说明,则状态默认为 ( r 1 , r 2 ) (r_1,r_2) (r1,r2)
另记
S = 1 4 r 2 ( − r 2 + r 1 2 + r 2 2 ) + r 1 2 ( r 2 − r 1 2 + r 2 2 ) + r 2 2 ( r 2 + r 1 2 − r 2 2 ) S=\frac{1}{4}\sqrt{r^2(-r^2+r_1^2+r_2^2)+r_1^2(r^2-r_1^2+r_2^2)+r_2^2(r^2+r_1^2-r_2^2)} S=41r2(r2+r12+r22)+r12(r2r12+r22)+r22(r2+r12r22)

思路

双极坐标系的面积元
r 1 r_1 r1 r 2 r_2 r2增量,求出如图所示的空出面积即可。

完整的过程

注意到,
d S dS dS

= ∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x =\int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx =x1(r1,r2)x1(r1,r2+dr2)r12x2 dx
+ ∫ x 1 ( r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 + d r 2 ) ( r 2 + d r 2 ) 2 − ( x − r ) 2 d x +\int_{x_1(r_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2+dr_2)} \sqrt{(r_2+dr_2)^2-(x-r)^2}dx +x1(r1,r2+dr2)x1(r1+dr1,r2+dr2)(r2+dr2)2(xr)2 dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x +\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx +x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2x2 dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 ) x 1 ( r 1 , r 2 ) r 2 2 − ( x − r ) 2 d x +\int_{x_1(r_1+dr_1,r_2)}^{x_1(r_1,r_2)} \sqrt{r_2^2-(x-r)^2}dx +x1(r1+dr1,r2)x1(r1,r2)r22(xr)2 dx

= ∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x =\int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx =x1(r1,r2)x1(r1,r2+dr2)r12x2 dx
+ ∫ x 1 ( r 1 , r 2 + d r 2 ) − r x 1 ( r 1 + d r 1 , r 2 + d r 2 ) − r ( r 2 + d r 2 ) 2 − x 2 d x +\int_{x_1(r_1,r_2+dr_2)-r}^{x_1(r_1+dr_1,r_2+dr_2)-r} \sqrt{(r_2+dr_2)^2-x^2}dx +x1(r1,r2+dr2)rx1(r1+dr1,r2+dr2)r(r2+dr2)2x2 dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x +\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx +x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2x2 dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 ) − r x 1 ( r 1 , r 2 ) − r r 2 2 − x 2 d x +\int_{x_1(r_1+dr_1,r_2)-r}^{x_1(r_1,r_2)-r} \sqrt{r_2^2-x^2}dx +x1(r1+dr1,r2)rx1(r1,r2)rr22x2 dx

= ∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x =\int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx =x1(r1,r2)x1(r1,r2+dr2)r12x2 dx
− ∫ x 2 ( r 1 , r 2 + d r 2 ) x 2 ( r 1 + d r 1 , r 2 + d r 2 ) ( r 2 + d r 2 ) 2 − x 2 d x -\int_{x_2(r_1,r_2+dr_2)}^{x_2(r_1+dr_1,r_2+dr_2)} \sqrt{(r_2+dr_2)^2-x^2}dx x2(r1,r2+dr2)x2(r1+dr1,r2+dr2)(r2+dr2)2x2 dx
+ ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x +\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx +x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2x2 dx
− ∫ x 2 ( r 1 + d r 1 , r 2 ) x 2 ( r 1 , r 2 ) r 2 2 − x 2 d x -\int_{x_2(r_1+dr_1,r_2)}^{x_2(r_1,r_2)} \sqrt{r_2^2-x^2}dx x2(r1+dr1,r2)x2(r1,r2)r22x2 dx

= ( ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x + ∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x ) =(\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx+\int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx) =(x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2x2 dx+x1(r1,r2)x1(r1,r2+dr2)r12x2 dx)
− ( ∫ x 2 ( r 1 + d r 1 , r 2 ) x 2 ( r 1 , r 2 ) r 2 2 − x 2 d x + ∫ x 2 ( r 1 , r 2 + d r 2 ) x 2 ( r 1 + d r 1 , r 2 + d r 2 ) ( r 2 + d r 2 ) 2 − x 2 d x ) -(\int_{x_2(r_1+dr_1,r_2)}^{x_2(r_1,r_2)} \sqrt{r_2^2-x^2}dx+\int_{x_2(r_1,r_2+dr_2)}^{x_2(r_1+dr_1,r_2+dr_2)} \sqrt{(r_2+dr_2)^2-x^2}dx) (x2(r1+dr1,r2)x2(r1,r2)r22x2 dx+x2(r1,r2+dr2)x2(r1+dr1,r2+dr2)(r2+dr2)2x2 dx)

= ( + ∫ x 1 ( r 1 + d r 1 , r 2 + d r 2 ) x 1 ( r 1 + d r 1 , r 2 ) ( r 1 + d r 1 ) 2 − x 2 d x =(+\int_{x_1(r_1+dr_1,r_2+dr_2)}^{x_1(r_1+dr_1,r_2)} \sqrt{(r_1+dr_1)^2-x^2}dx =(+x1(r1+dr1,r2+dr2)x1(r1+dr1,r2)(r1+dr1)2x2 dx
− ∫ x 1 ( r 1 , r 2 + d r 2 ) x 1 ( r 1 , r 2 ) r 1 2 − x 2 d x ) -\int_{x_1(r_1,r_2+dr_2)}^{x_1(r_1,r_2)} \sqrt{r_1^2-x^2}dx) x1(r1,r2+dr2)x1(r1,r2)r12x2 dx)
+ ( + ∫ x 2 ( r 1 + d r 1 , r 2 + d r 2 ) x 2 ( r 1 , r 2 + d r 2 ) ( r 2 + d r 2 ) 2 − x 2 d x +(+\int_{x_2(r_1+dr_1,r_2+dr_2)}^{x_2(r_1,r_2+dr_2)} \sqrt{(r_2+dr_2)^2-x^2}dx +(+x2(r1+dr1,r2+dr2)x2(r1,r2+dr2)(r2+dr2)2x2 dx
− ∫ x 2 ( r 1 + d r 1 , r 2 ) x 2 ( r 1 , r 2 ) r 2 2 − x 2 d x ) -\int_{x_2(r_1+dr_1,r_2)}^{x_2(r_1,r_2)} \sqrt{r_2^2-x^2}dx) x2(r1+dr1,r2)x2(r1,r2)r22x2 dx)

= d r 1 ⋅ ∂ ∂ r 1 ⋅ ∫ x 1 ( r 1 , r 2 + d r 2 ) x 1 ( r 1 , r 2 ) r 1 2 − x 2 d x =dr_1 \cdot \frac{\partial}{\partial r_1} \cdot \int_{x_1(r_1,r_2+dr_2)}^{x_1(r_1,r_2)} \sqrt{r_1^2-x^2}dx =dr1r1x1(r1,r2+dr2)x1(r1,r2)r12x2 dx
+ d r 2 ⋅ ∂ ∂ r 2 ⋅ ∫ x 2 ( r 1 + d r 1 , r 2 ) x 2 ( r 1 , r 2 ) r 2 2 − x 2 d x +dr_2 \cdot \frac{\partial}{\partial r_2} \cdot \int_{x_2(r_1+dr_1,r_2)}^{x_2(r_1,r_2)} \sqrt{r_2^2-x^2}dx +dr2r2x2(r1+dr1,r2)x2(r1,r2)r22x2 dx

这里有两个对称的项,只要算出来一个即可。

∫ x 1 ( r 1 , r 2 ) x 1 ( r 1 , r 2 + d r 2 ) r 1 2 − x 2 d x \int_{x_1(r_1,r_2)}^{x_1(r_1,r_2+dr_2)} \sqrt{r_1^2-x^2}dx x1(r1,r2)x1(r1,r2+dr2)r12x2 dx

= r 1 2 2 ( arcsin ⁡ x 1 ( r 1 , r 2 + d r 2 ) r 1 − arcsin ⁡ x 2 ( r 1 , r 2 ) r 1 ) =\frac{r_1^ 2}{2}(\arcsin\frac{x_1(r_1,r_2+dr_2)}{r_1}-\arcsin\frac{x_2(r_1,r_2)}{r_1}) =2r12(arcsinr1x1(r1,r2+dr2)arcsinr1x2(r1,r2))
+ ( x 1 ( r 1 , r 2 + d r 2 ) 2 r 1 2 − x 1 2 ( r 1 , r 2 + d r 2 ) − x 1 ( r 1 , r 2 ) 2 r 1 2 − x 1 2 ( r 1 , r 2 ) ) +(\frac{x_1(r_1,r_2+dr_2)}{2}\sqrt{r_1^2-x_1^2(r_1,r_2+dr_2)}-\frac{x_1(r_1,r_2)}{2}\sqrt{r_1^2-x_1^2(r_1,r_2)}) +(2x1(r1,r2+dr2)r12x12(r1,r2+dr2) 2x1(r1,r2)r12x12(r1,r2) )

= r 1 2 2 ( =\frac{r_1^2}{2}( =2r12(
( arcsin ⁡ cos ⁡ θ 1 ( r 1 , r 2 + d r 2 ) − arcsin ⁡ cos ⁡ θ 1 ( r 1 , r 2 ) ) (\arcsin \cos \theta_1 (r_1,r_2+dr_2)-\arcsin \cos \theta_1 (r_1,r_2)) (arcsincosθ1(r1,r2+dr2)arcsincosθ1(r1,r2))
+ 1 2 ⋅ ( sin ⁡ 2 θ 1 ( r 1 , r 2 + d r 2 ) − sin ⁡ 2 θ 1 ( r 1 , r 2 ) ) +\frac{1}{2} \cdot (\sin 2 \theta_1 (r_1,r_2+dr_2) - \sin 2 \theta_1(r_1,r_2)) +21(sin2θ1(r1,r2+dr2)sin2θ1(r1,r2))
) ) )

= d r 2 r 1 2 2 ∂ ∂ r 2 ( arcsin ⁡ cos ⁡ θ 1 + 1 2 ⋅ ( sin ⁡ 2 θ 1 ) ) =dr_2\frac{r_1^2}{2} \frac{\partial}{\partial r_2} (\arcsin \cos \theta_1 +\frac{1}{2} \cdot (\sin 2 \theta_1)) =dr22r12r2(arcsincosθ1+21(sin2θ1))

= d r 2 r 1 2 2 ( =dr_2\frac{r_1^2}{2}( =dr22r12(
∂ arcsin ⁡ cos ⁡ θ 1 ∂ cos ⁡ θ 1 ∂ cos ⁡ θ 1 ∂ r 2 \frac{\partial \arcsin \cos \theta_1 }{\partial \cos \theta_1 }\frac{\partial \cos \theta_1}{\partial r_2} cosθ1arcsincosθ1r2cosθ1
+ 1 2 ∂ sin ⁡ 2 θ 1 ∂ 2 θ 1 ∂ 2 θ 1 ∂ θ 1 ( ∂ cos ⁡ θ 1 ∂ θ 1 ) − 1 ∂ cos ⁡ θ 1 ∂ r 2 +\frac{1}{2}{\frac{\partial \sin 2 \theta_1 }{\partial 2 \theta_1 }\frac{\partial 2 \theta_1}{\partial \theta_1}(\frac{\partial \cos \theta_1}{\partial \theta_1})^{-1}\frac{\partial \cos \theta_1}{\partial r_2}} +212θ1sin2θ1θ12θ1(θ1cosθ1)1r2cosθ1
) ) )

= d r 2 r 1 2 2 ( =dr_2\frac{r_1^2}{2}( =dr22r12(
∂ arcsin ⁡ cos ⁡ θ 1 ∂ cos ⁡ θ 1 ∂ r 2 + r 1 2 − r 2 2 2 r r 1 ∂ r 2 \frac{\partial \arcsin \cos \theta_1}{\partial \cos \theta_1 }\frac{\partial \frac{r^2 + r_1^2 - r_2^2}{2rr_1}}{\partial r_2} cosθ1arcsincosθ1r22rr1r2+r12r22
+ 1 2 ∂ sin ⁡ 2 θ 1 ∂ 2 θ 1 ∂ 2 θ 1 ∂ θ 1 ( ∂ cos ⁡ θ 1 ∂ θ 1 ) − 1 ∂ r 2 + r 1 2 − r 2 2 2 r r 1 ∂ r 2 +\frac{1}{2}{\frac{\partial \sin 2 \theta_1 }{\partial 2 \theta_1 }\frac{\partial 2 \theta_1}{\partial \theta_1}(\frac{\partial \cos \theta_1 }{\partial \theta_1})^{-1}\frac{\partial \frac{r^2 + r_1^2 - r_2^2}{2rr_1}}{\partial r_2}} +212θ1sin2θ1θ12θ1(θ1cosθ1)1r22rr1r2+r12r22
) ) )

= d r 2 r 1 2 2 ( =dr_2\frac{r_1^2}{2}( =dr22r12(
1 sin ⁡ θ 1 − 2 r 2 2 r r 1 \frac{1}{\sin \theta_1} \frac{ - 2r_2}{2rr_1} sinθ112rr12r2
+ 1 2 cos ⁡ 2 θ 1 2 1 sin ⁡ θ 1 − 2 r 2 2 r r 1 +\frac{1}{2} \cos 2 \theta_12\frac{1}{\sin \theta_1}\frac{ - 2r_2}{2rr_1} +21cos2θ12sinθ112rr12r2
) ) )

= d r 2 − r 1 2 2 r 2 r r 1 1 sin ⁡ θ 1 ( 1 + cos ⁡ 2 θ 1 ) =dr_2-\frac{r_1^2}{2}\frac{r_2}{rr_1}\frac{1}{\sin \theta_1}(1+ \cos 2 \theta_1) =dr22r12rr1r2sinθ11(1+cos2θ1)

= d r 2 − r 1 2 2 r 2 r r 1 1 sin ⁡ θ 1 2 sin ⁡ 2 θ 1 =dr_2-\frac{r_1^2}{2}\frac{r_2}{rr_1}\frac{1}{\sin \theta_1 }2\sin^2\theta_1 =dr22r12rr1r2sinθ112sin2θ1

= d r 2 − r 1 r 2 r sin ⁡ θ 1 =dr_2-\frac{r_1r_2}{r}\sin\theta_1 =dr2rr1r2sinθ1

∂ ∂ r 1 ⋅ ∫ x 1 ( r 1 , r 2 + d r 2 ) x 1 ( r 1 , r 2 ) r 1 2 − x 2 d x \frac{\partial}{\partial r_1} \cdot \int_{x_1(r_1,r_2+dr_2)}^{x_1(r_1,r_2)} \sqrt{r_1^2-x^2}dx r1x1(r1,r2+dr2)x1(r1,r2)r12x2 dx

= d r 2 ∂ ∂ r 1 ⋅ r 1 r 2 r sin ⁡ θ 1 =dr_2\frac{\partial}{\partial r_1} \cdot \frac{r_1r_2}{r}\sin\theta_1 =dr2r1rr1r2sinθ1

= d r 2 r 2 r ∂ r 1 sin ⁡ θ 1 ∂ r 1 =dr_2\frac{r_2}{r} \frac{\partial r_1\sin\theta_1}{\partial r_1} =dr2rr2r1r1sinθ1

= d r 2 r 2 r ( sin ⁡ θ 1 + r 1 ∂ sin ⁡ θ 1 ∂ θ 1 ( ∂ cos ⁡ θ 1 ∂ θ 1 ) − 1 ∂ cos ⁡ θ 1 ∂ r 1 ) =dr_2\frac{r_2}{r} (\sin\theta_1+r_1\frac{\partial \sin\theta_1}{\partial\theta_1}(\frac{\partial \cos\theta_1}{\partial \theta_1})^{-1}\frac{\partial \cos\theta_1}{\partial r_1}) =dr2rr2(sinθ1+r1θ1sinθ1(θ1cosθ1)1r1cosθ1)

= d r 2 r 2 r ( sin ⁡ θ 1 + r 1 ∂ sin ⁡ θ 1 ∂ θ 1 ( ∂ cos ⁡ θ 1 ∂ θ 1 ) − 1 ∂ r 2 + r 1 2 − r 2 2 2 r r 1 ∂ r 1 ) =dr_2\frac{r_2}{r} (\sin\theta_1+r_1\frac{\partial \sin\theta_1}{\partial\theta_1}(\frac{\partial \cos\theta_1}{\partial \theta_1})^{-1}\frac{\partial \frac{r^2 + r_1^2 - r_2^2}{2rr_1}}{\partial r_1}) =dr2rr2(sinθ1+r1θ1sinθ1(θ1cosθ1)1r12rr1r2+r12r22)

= d r 2 r 2 r ( sin ⁡ θ 1 + r 1 ∂ sin ⁡ θ 1 ∂ θ 1 ( ∂ cos ⁡ θ 1 ∂ θ 1 ) − 1 ( 2 r r 1 ) ⋅ ∂ ∂ r 1 ( r 2 + r 1 2 − r 2 2 ) − ( r 2 + r 1 2 − r 2 2 ) ⋅ ∂ ∂ r 1 ( 2 r r 1 ) ( 2 r r 1 ) 2 =dr_2\frac{r_2}{r} (\sin\theta_1+r_1\frac{\partial \sin\theta_1}{\partial\theta_1}(\frac{\partial \cos\theta_1}{\partial \theta_1})^{-1}\frac{(2rr_1) \cdot \frac{\partial}{\partial r_1}(r^2 + r_1^2 - r_2^2) - (r^2 + r_1^2 - r_2^2) \cdot \frac{\partial}{\partial r_1}(2rr_1)}{(2rr_1)^2} =dr2rr2(sinθ1+r1θ1sinθ1(θ1cosθ1)1(2rr1)2(2rr1)r1(r2+r12r22)(r2+r12r22)r1(2rr1)

= d r 2 r 2 r ( sin ⁡ θ 1 + r 1 cos ⁡ θ 1 1 sin ⁡ θ 1 r 1 2 + r 2 2 − r 2 2 r r 1 2 ) =dr_2\frac{r_2}{r} (\sin\theta_1+r_1 \cos\theta_1\frac{1}{ \sin\theta_1 }\frac{r_1^2 + r_2^2 - r^2}{2rr_1^2}) =dr2rr2(sinθ1+r1cosθ1sinθ112rr12r12+r22r2)

= d r 2 r 2 r ( sin ⁡ θ 1 + cot ⁡ θ 1 cos ⁡ θ r 2 r ) =dr_2\frac{r_2}{r} (\sin\theta_1+\cot\theta_1\cos\theta\frac{r_2}{r}) =dr2rr2(sinθ1+cotθ1cosθrr2)

代入到原式。

d S dS dS
= d r 1 d r 2 ( r 2 sin ⁡ θ 1 + r 1 sin ⁡ θ 2 r + cos ⁡ θ r 2 ( r 2 2 cot ⁡ θ 1 + r 1 2 cot ⁡ θ 2 ) ) =dr_1dr_2(\frac{r_2\sin\theta_1+r_1\sin\theta_2}{r}+\frac{\cos\theta}{r^2}(r_2^2\cot\theta_1+r_1^2\cot\theta_2)) =dr1dr2(rr2sinθ1+r1sinθ2+r2cosθ(r22cotθ1+r12cotθ2))
= d r 1 d r 2 r 2 ( S 2 ( r 2 r 1 + r 1 r 2 ) + r ( r 1 2 + r 2 2 − r 2 ) 4 S ( r 1 + r 2 ) ) =\frac{dr_1dr_2}{r^2}(\frac{S}{2}(\frac{r_2}{r_1}+\frac{r_1}{r_2})+\frac{r(r_1^2+r_2^2-r^2)}{4S}(r_1+r_2)) =r2dr1dr2(2S(r1r2+r2r1)+4Sr(r12+r22r2)(r1+r2))
这与学术界的结论不一致,也与之前自己推的结果不一致,但暂时不知道哪里算错了。
在之前计算过这样一个结果,可惜草稿纸找不到了。

F = r 2 + r 1 2 + r 2 2 F=r^2+r_1^2+r_2^2 F=r2+r12+r22
H = r 4 + r 1 4 + r 2 4 H=r^4+r_1^4+r_2^4 H=r4+r14+r24

d S = d r 1 d r 2 ( F − r 2 ) ( F 2 − 2 H + F ) − 2 ( H − r 4 ) 2 r 2 r 1 r 2 dS=dr_1dr_2\frac{(F-r^2)(\sqrt{F^2-2H}+F)-2(H-r4)}{2r^2r_1r_2} dS=dr1dr22r2r1r2(Fr2)(F22H +F)2(Hr4)

相关文章:

  • RabbitMQ 四种交换机(Direct、Topic、Fanout、Headers)详解
  • 端到端自动驾驶的数据规模化定律
  • 【Vue】Vue3项目创建
  • Dify框架面试内容整理-Dify框架
  • WPF高级用法示例
  • 服务器传输数据存储数据建议 传输慢的原因
  • 使用MyBatis注解方式的完整示例,涵盖CRUD、动态SQL、分页、事务管理等场景,并附详细注释和对比表格
  • linux的例行性工作(at)
  • JS自动化获取网站信息开发说明
  • 巧用 Element - UI 实现图片上传按钮的智能隐藏
  • 【linux】SSH 连接 WSL2 本地环境的完整步骤
  • 《探秘计算机启动幕后英雄:BIOS/UEFI与GRUB/bootloader》
  • 苹果计划2026年底前实现美版iPhone“印度造”,以减轻关税及地缘政治风险
  • 【Linux网络】HTTP协议全解析 - 从请求响应到方法与Header
  • 【NeurlPS 2024】MAR:无矢量量化的自回归图像生成
  • 5G融合消息PaaS项目深度解析 - Java架构师面试实战
  • Adruino:人机界面及接口技术
  • 【数据结构与算法】从完全二叉树到堆再到优先队列
  • 【Redis——通用命令】
  • 【Linux应用】交叉编译环境配置,以及最简单粗暴的环境移植(直接从目标板上复制)
  • 国际锐评:菲律宾“狐假虎威”把戏害的是谁?
  • 东风着陆场近日气象条件满足神舟十九号安全返回要求
  • 证据公布!菲律宾6人非法登上铁线礁活动
  • 中国银行副行长刘进任该行党委副书记
  • 浙江官宣:五一假期,没电、没气、没油车辆全部免费拖离高速
  • 辽宁辽阳市白塔区一饭店发生火灾,事故已造成22人遇难3人受伤