Flink02-学习-套接字分词
flatmap()
AMapFunction仅适用于执行一对一转换的情况:对于每个进入的流元素,map()都会发出一个转换后的元素。否则,您需要使用 flatmap()
DataStream<TaxiRide> rides = env.addSource(new TaxiRideSource(...));DataStream<EnrichedRide> enrichedNYCRides = rides.flatMap(new NYCEnrichment());enrichedNYCRides.print();
连同FlatMapFunction:
DataStream<TaxiRide> rides = env.addSource(new TaxiRideSource(...));DataStream<EnrichedRide> enrichedNYCRides = rides.flatMap(new NYCEnrichment());enrichedNYCRides.print();
通过Collector此接口提供的功能,该flatmap()方法可以发出任意数量的流元素,包括不发出任何元素。
实践
Flink 的 DataStream API 允许你流式传输任何可以序列化的数据。Flink 自己的序列化器用于
基本类型,即 String、Long、Integer、Boolean、Array
复合类型:Tuples、POJO
对于其他类型,Flink 会回退到 Kryo。Flink 也可以使用其他序列化器。
pom内容如上个内容,此处不再赘述。
定义本机变量
连接的 IP 地址为 0.0.0.0(监听所有网络接口)
// 本机String ip = "0.0.0.0";//开启的端口号int port = 8886;
获取flink环境
StreamExecutionEnvironment executionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
使用套接字-socket流
DataStreamSource<String> stringDataStreamSource = executionEnvironment.socketTextStream(ip, port, "\n");
FlatMap-分词
数据转换 - 分词和计数。
使用 flatMap 操作对每行文本进行分词处理;
将每行文本按空白字符分割成单词数组;
为每个单词生成一个 (单词, 1) 的元组(Tuple2);
结果是一个包含 (单词, 计数) 对的流
SingleOutputStreamOperator<Tuple2<String, Long>> tuple2SingleOutputStreamOperator = stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {@Overridepublic void flatMap(String s, Collector<Tuple2<String, Long>> collector) throws Exception {String[] splits = s.split("\\s");for (String word : splits) {collector.collect(Tuple2.of(word, 1L));}}});
分组和窗口计算
keyBy: 按照元组的第一个字段(单词)进行分组;
window: 定义滑动窗口:窗口大小:5秒,滑动间隔:1秒;
sum(1): 对每个窗口内相同单词的计数(元组的第二个字段)求和;
SingleOutputStreamOperator<Tuple2<String, Long>> word = tuple2SingleOutputStreamOperator.keyBy(new KeySelector<Tuple2<String, Long>, Object>() {@Overridepublic Object getKey(Tuple2<String, Long> stringLongTuple2) throws Exception {return stringLongTuple2.f0;}}).window(SlidingProcessingTimeWindows.of(Time.seconds(5), Time.seconds(1))).sum(1);
完整代码
package org.example.snow.demo2;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;public class startDemo {public static void main(String[] args) throws Exception {String ip = "0.0.0.0";int port = 8886;StreamExecutionEnvironment executionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();// 使用socket流创建一个从 socket 读取文本的数据流,以换行符 \n 作为分隔符DataStreamSource<String> stringDataStreamSource = executionEnvironment.socketTextStream(ip, port, "\n");SingleOutputStreamOperator<Tuple2<String, Long>> tuple2SingleOutputStreamOperator = stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {@Overridepublic void flatMap(String s, Collector<Tuple2<String, Long>> collector) throws Exception {String[] splits = s.split("\\s");for (String word : splits) {collector.collect(Tuple2.of(word, 1L));}}});SingleOutputStreamOperator<Tuple2<String, Long>> word = tuple2SingleOutputStreamOperator.keyBy(new KeySelector<Tuple2<String, Long>, Object>() {@Overridepublic Object getKey(Tuple2<String, Long> stringLongTuple2) throws Exception {return stringLongTuple2.f0;}}).window(SlidingProcessingTimeWindows.of(Time.seconds(5), Time.seconds(1))).sum(1);word.print();executionEnvironment.execute("stream!");}
}
启动服务
nc -lk 8886
运行效果