当前位置: 首页 > news >正文

halcon机器视觉深度学习对象检测,物体检测

目录

    • 效果图
    • 操作步骤
    • 软件版本
    • halcon参考代码
    • 本地函数 get_distinct_colors()
    • 本地函数 make_neighboring_colors_distinguishable()

效果图

在这里插入图片描述
在这里插入图片描述

操作步骤

首先要在Deep Learning Tool工具里面把图片打上标注文本,
然后训练模型,导出模型文件

这个是模型
model_训练-250215-111516_opt.hdl

模型配置参数
model_训练-250215-111516_opt_dl_preprocess_params.hdict

软件版本

  • 使用的版本 halcon 23.11
  • Deep Learning Tool-24.05.1

halcon参考代码

 
* 
* Inference can be done on a GPU or CPU.
* See the respective system requirements in the Installation Guide.
* If possible a GPU is used in this example.
* In case you explicitly wish to run this example on the CPU,
* choose the CPU device instead.
query_available_dl_devices (['runtime', 'runtime'], ['gpu', 'cpu'], DLDeviceHandles)
if (|DLDeviceHandles| == 0)
    throw ('No supported device found to continue this example.')
endif
* Due to the filter used in query_available_dl_devices, the first device is a GPU, if available.
*第一个设备是 GPU(如果可用)
DLDevice := DLDeviceHandles[0]
* 
 

* *************************************************
* **   设置推理路径和参数   ***
* *************************************************
* 
* 我们将对示例图像进行推理。
* 在实际应用程序中,新传入的图像(不用于训练或评估)
* 将在此处使用。
* 
* 在此示例中,我们从 file 中读取图像。
 
   
* 用我训练的图片
ImageDir :=  'G:/机器视觉_测试项目/家具目标检测/images - 副本'

* 
* Set the paths of the retrained model and the corresponding preprocessing parameters.
* Example data folder containing the outputs of the previous example series.
ExampleDataDir := 'detect_pills_data'
 
    * Use the pretrained model and preprocessing parameters shipping with HALCON.
    *使用 HALCON 附带的预训练模型和预处理参数。
    *PreprocessParamFileName := 'detect_pills_preprocess_param.hdict'
   * RetrainedModelFileName := 'detect_pills.hdl'
    
    
    *whl 测试我自己训练的模型和参数,图片配置
    dir1223:='G:/机器视觉_测试项目/家具目标检测/'
    imgConfigHdict:='model_训练-250215-111516_opt_dl_preprocess_params.hdict'
    PreprocessParamFileName:= dir1223+imgConfigHdict
    
    *识别模型
    * RetrainedModelFileName := dir1223+ 'best_model.hdl'
    RetrainedModelFileName :=dir1223+ 'model_训练-250215-111516_opt.hdl'
 
    
* 
* Batch Size used during inference.推理批次大小
BatchSizeInference := 1
* 
* Postprocessing parameters for the detection model.检测模型的后处理参数。
MinConfidence := 0.6
MaxOverlap := 0.2
MaxOverlapClassAgnostic := 0.7
* 
* ********************
* **   推理   ***
* ********************
* 
* Check if all necessary files exist.
*check_data_availability (ExampleDataDir, PreprocessParamFileName, RetrainedModelFileName, UsePretrainedModel)
* 
*  读取重新训练的模型。
read_dl_model (RetrainedModelFileName, DLModelHandle)
* 
* Set the batch size. 设置批处理大小。
set_dl_model_param (DLModelHandle, 'batch_size', BatchSizeInference)
* 
* Initialize the model for inference.初始化模型以进行推理。
set_dl_model_param (DLModelHandle, 'device', DLDevice)
* 
* Set postprocessing parameters for model.设置模型的后处理参数。
set_dl_model_param (DLModelHandle, 'min_confidence', MinConfidence)
set_dl_model_param (DLModelHandle, 'max_overlap', MaxOverlap)
set_dl_model_param (DLModelHandle, 'max_overlap_class_agnostic', MaxOverlapClassAgnostic)
* 
* Get the parameters used for preprocessing.获取用于预处理的参数。
read_dict (PreprocessParamFileName, [], [], DLPreprocessParam)
* 

* 使用显示所需的数据集参数创建字典。
DLDataInfo := dict{}
get_dl_model_param (DLModelHandle, 'class_names', ClassNames)

* 目标对象,标签名称
DLDataInfo.class_names := ClassNames
get_dl_model_param (DLModelHandle, 'class_ids', ClassIDs)
DLDataInfo.class_ids := ClassIDs
* 设置可视化的通用参数。
GenParam := dict{scale_windows: 1.2,display_labels:true}
 
 
 *读取目录里面的若干图片文件
 list_files (ImageDir, ['files' ], ImageFiles)

    *获取图片尺寸,whl测试
     read_image(img1,ImageFiles[0])        
     get_image_size (img1, Width, Height)
    * dev_open_window (1, 1, Width, Height, 'black', WindowID1)
   dev_open_window (1, 1, 900, 900*Height/(Width*1.0), 'black', WindowID1)
   
  *视频文件读取
  *grab_image_from_video()
 * open_framegrabber()
  * 读取视频帧
*grab_image_start([])
*grab_image(Image)
*grab_image_stop([])
   

* 
* 以 BatchSizeInference 大小批量循环访问所有图像以进行推理
for BatchIndex := 0 to floor(|ImageFiles| / real(BatchSizeInference)) - 1 by 1
    * 
    * Get the paths to the images of the batch.
    Batch := ImageFiles[BatchIndex * BatchSizeInference:(BatchIndex + 1) * BatchSizeInference - 1]
    

    
    * 读取图片
    read_image (ImageBatch, Batch)
    * 
    * Generate the DLSampleBatch.
    gen_dl_samples_from_images (ImageBatch, DLSampleBatch)
    * 
    * Preprocess the DLSampleBatch.
    preprocess_dl_samples (DLSampleBatch, DLPreprocessParam)
    * 
    * 在 DLSampleBatch 上应用 DL 模型。
    apply_dl_model (DLModelHandle, DLSampleBatch, [], DLResultBatch)
    
    
    * 
    * Postprocessing and visualization.后处理和可视化
    * Loop over each sample in the batch.循环处理批次中的每个样品
    for SampleIndex := 0 to BatchSizeInference - 1 by 1
        * 
        * Get sample and according results.获取样本和相应的结果。
        DLSample := DLSampleBatch[SampleIndex]
        DLResult := DLResultBatch[SampleIndex]
        * 
 
  *whl测试
KeysForDisplay:='bbox_result'

        * 
        * 显示检测结果.
        * dev_display_dl_data (DLSample, DLResult, DLDataInfo, 'bbox_result', GenParam, WindowHandleDict)
              
        *whl测试,ocr_detection_score_map_character
        
       * 
* This procedure displays the content of the provided DLSample and/or DLResult
* depending on the input string KeysForDisplay.
* DLDatasetInfo is a dictionary containing the information about the dataset.
* The visualization can be adapted with GenParam.
* 
* ** Set the default values: ***
Params := dict{}
* 
* Define the screen width when a new window row is started.
Params.threshold_width := 1024
* Since potentially a lot of windows are opened,
* scale the windows consistently.
Params.scale_windows := 0.8
* Set a font and a font size.
Params.font := 'mono'
Params.font_size := 14
* 
Params.line_width := 2
Params.map_transparency := 'cc'
Params.map_color_bar_width := 140
* 
* Define parameter values specifically for 3d_gripping_point_detection
Params.gripping_point_color := '#00FF0099'
Params.gripping_point_size := 6
Params.region_color := '#FF000040'
Params.gripping_point_map_color := '#83000080'
Params.gripping_point_background_color := '#00007F80'
* 
* Define parameter values specifically for anomaly detection
* and Global Context Anomaly Detection.
Params.anomaly_region_threshold := -1
Params.anomaly_classification_threshold := -1
Params.anomaly_region_label_color := '#40e0d0'
Params.anomaly_color_transparency := '40'
Params.anomaly_region_result_color := '#ff0000c0'
* 
* Define segmentation-specific parameter values.
Params.segmentation_max_weight := 0
Params.segmentation_draw := 'fill'
Params.segmentation_transparency := 'aa'
Params.segmentation_exclude_class_ids := []
* 
* Define bounding box-specific parameter values.
Params.bbox_label_color := '#000000' + '99'
Params.bbox_display_confidence := 1
Params.bbox_text_color := '#eeeeee'
* 
* By default, display a description on the bottom.
Params.display_bottom_desc := true
* 
* By default, show a legend with class IDs.
Params.display_legend := true
* 
* By default, show the anomaly ground truth regions.
Params.display_ground_truth_anomaly_regions := true
* 
* By default, show class IDs and color frames for classification ground truth/results.
Params.display_classification_ids := true
Params.display_classification_color_frame := true
* 
* By default, show class labels for detection ground truth/results.
Params.display_labels := true
* 
* By default, show direction of the ground truth/results instances for detection with instance_type 'rectangle2'.
Params.display_direction := true
* 
* By default, use color scheme 'Jet' for the heatmap display.
Params.heatmap_color_scheme := 'jet'
* ** Set user-defined values: ***
* 
* Overwrite default values by given generic parameters.
if (GenParam != [])
    get_dict_param (GenParam, 'keys', [], GenParamNames)
    for ParamIndex := 0 to |GenParamNames| - 1 by 1
        GenParamName := GenParamNames[ParamIndex]
        get_dict_param (Params, 'key_exists', GenParamName, KeyExists)
        if (not KeyExists)
            throw ('Unknown generic parameter: ' + GenParamName + '.')
        endif
        Params.[GenParamName] := GenParam.[GenParamName]
    endfor
endif
* 
if (|DLSample| > 1 or |DLResult| > 1)
    throw ('Only a single dictionary for DLSample and DLResult is allowed')
endif
* 
* Get the dictionary keys.
get_dict_param (DLSample, 'keys', [], SampleKeys)
if (DLResult != [])
    get_dict_param (DLResult, 'keys', [], ResultKeys)
endif
* 
* Get image ID if it is available.
get_dict_param (DLSample, 'key_exists', 'image_id', ImageIDExists)
if (ImageIDExists)
    get_dict_tuple (DLSample, 'image_id', ImageID)
    ImageIDString := 'image ID ' + ImageID
    ImageIDStringBraces := '(image ID ' + ImageID + ')'
    ImageIDStringCapital := 'Image ID ' + ImageID
else
    ImageIDString := ''
    ImageIDStringBraces := ImageIDString
    ImageIDStringCapital := ImageIDString
endif
* 
 
AdditionalGreenClassNames := []
KeyIndex := 0

* whl添加if
 
* 
* Check if DLDatasetInfo is valid.

* whl添加
DLDatasetInfo:=DLDataInfo
 
    * Check if DLDatasetInfo contains necessary keys.
    ClassKeys := ['class_names', 'class_ids']
    get_handle_param (DLDatasetInfo, 'key_exists', ClassKeys, ClassKeysExist)
    if (min(ClassKeysExist) == 0)
        * In that case we expect that the class names and ids are never used.
    else
        get_handle_param (DLDatasetInfo, 'keys', [], DLDatasetInfoKeys)
        for Index := 0 to |ClassKeys| - 1 by 1
            if (find_first(DLDatasetInfoKeys,ClassKeys[Index]) == -1)
                throw ('Key ' + ClassKeys[Index] + ' is missing in DLDatasetInfo.')
            endif
        endfor
        * 
        * Get the general dataset information, if available.
        get_handle_tuple (DLDatasetInfo, 'class_names', ClassNames)
        get_handle_tuple (DLDatasetInfo, 'class_ids', ClassIDs)
        * 
        
        
        * 为类定义不同的颜色
     *   get_dl_class_colors (ClassNames, AdditionalGreenClassNames, Colors)
       
        
        
        * 函数get_dl_class_colors 替代者,开始
        * Define distinct colors for the classes.
NumColors := |ClassNames|
* Get distinct colors without randomness makes neighboring colors look very similar.
* We use a workaround to get deterministic colors where subsequent colors are distinguishable.
get_distinct_colors (NumColors, false, 0, 200, ColorsRainbow)

tuple_inverse (ColorsRainbow, ColorsRainbow)
make_neighboring_colors_distinguishable (ColorsRainbow, Colors)
* If a class 'OK','ok', 'good' or 'GOOD' or a class specified in AdditionalGreenClassNames is present set this class to green.
* Only the first occurrence found is set to a green shade.
tuple_union (['good', 'GOOD', 'ok', 'OK'], AdditionalGreenClassNames, ClassNamesGood)
for IndexFind := 0 to |ClassNamesGood| - 1 by 1
    GoodIdx := find_first(ClassNames,ClassNamesGood[IndexFind])
    if (GoodIdx != -1 and |ClassNames| <= 8)
        * If number of classes is <= 8, swap color with a green color.
        CurrentColor := Colors[GoodIdx]
        GreenIdx := floor(|ClassNames| / 2.0)
        * Set to pure green.
        Colors[GoodIdx] := '#00ff00'
        * Write original color to a green entry.
        Colors[GreenIdx] := CurrentColor
        break
    elseif (GoodIdx != -1 and |ClassNames| > 8)
        * If number of classes is larger than 8, set the respective color to green.
        Colors[GoodIdx] := '#00ff00'
        break
    endif
endfor
* 函数get_dl_class_colors 替代者,结束
        
        
    
     
    endif
 
* 
* ** Set window parameters: ***
* 
   
* 
* ** Display the data: ***
* 
* Display data dictionaries.
KeyIndex := 0
  *while (KeyIndex < |KeysForDisplay|)
    * 
 
    
    * 
    if (KeysForDisplay[KeyIndex] == 'bbox_result' or KeysForDisplay[KeyIndex] == 'ocr_detection_result')
        * 
        * Result bounding boxes on image.图像上的结果边界框。
         get_dl_sample_image (Image, SampleKeys, DLSample, 'image')
       * get_dl_sample_image (ImageBatch, SampleKeys, DLSample, 'image')
        
        * 
        * Get or open next window.训练时的图片宽高
        get_image_size (Image, WidthImage, HeightImage)
       * get_next_window (Params.font, Params.font_size, Params.display_bottom_desc, WidthImage, HeightImage, 0, Params.scale_windows, Params.threshold_width, PrevWindowCoordinates, WindowHandleDict, KeysForDisplay[KeyIndex], CurrentWindowHandle, WindowImageRatio, PrevWindowCoordinates)
        
     *原始代码,whl测试注释,训练时的压缩后图片
        * dev_display (Image)
        
        
        *whl添加,获取窗口尺寸
        * get_window_extents(WindowID1,Row,Column,Window_Width,Window_Height)
       
         *图片原图本身尺寸,非训练设置压缩的图片尺寸
         get_image_size (ImageBatch, WidthBig, HeightBig)
        
         *whl添加,比值
         *应该先把训练时图片的原始框点转换图片本身尺寸时的坐标就可以了
        imgRate:=1
        imgHeightBeiWidth:=1
        
        if(1)
            *宽度,乘以1.0转为小数,可以让除得到小数结果
            imgRate:=WidthBig/(WidthImage*1.0)
            
            * 高度占宽度的比值
            imgHeightBeiWidth:=HeightBig/(HeightImage*1.0)
        endif
        
        
         *whl 添加,显示原图片
         * 调整图像尺寸
         * zoom_image_size(ImageBatch,imgZoom,800,800*HeightBig/(WidthBig*1.0),'constant')
       * zoom_image_size(ImageBatch,imgZoom,800,800*HeightBig/(WidthBig*1.0),'constant')
       
        dev_clear_window()
         
         *whl 添加,显示原图片 
         dev_display(ImageBatch)
     
        
        *让窗口适应图片的尺寸,窗口跟图片一样大
       *   dev_resize_window_fit_image (ImageBatch, 0, 0, -1, -1)
         * dev_re
        * dev_open_window_fit_image (ImageBatch, 0, 0, -1, -1, WindowID1)
        *dev_resize_window_fit_size (0, 0, -1, -1, -1, -1)
         *full_domain(ImageBatch,ImageBatch)
        * dev_set_window(WindowID1)
        * dev_set_part
         
          
        
        *whl 添加测试
        WindowImageRatio:=1
        CurrentWindowHandle:=WindowID1
      
        *目标对象分类文本
       * className:=DLResult.bbox_class_name
        
          *显示目标对象框 
        *dev_display_result_detection (DLResult, ResultKeys, Params.line_width, ClassIDs, TextConf, Colors, Params.bbox_label_color, WindowImageRatio, 'top', Params.bbox_text_color, Params.display_labels, DisplayDirectionTemp, CurrentWindowHandle, BboxClassIndex)
       *dev_display_result_detection (DLResult, ResultKeys, Params.line_width, ClassIDs, TextConf, Colors, Params.bbox_label_color, WindowImageRatio, 'top', Params.bbox_text_color, Params.display_labels, DisplayDirectionTemp, CurrentWindowHandle, BboxClassIndex)
        
        *目标文本显示
         set_display_font (WindowID1, 12, 'mono', 'false', 'false')  
     
        
         
                *提取函数,显示目标对象框,识别分类文本,开始
InstanceType := ''
MaskExists := false
if (find(ResultKeys,'bbox_row1') != -1)   
    *进这个
    get_dict_tuple (DLResult, 'bbox_row1', BboxRow1)
    get_dict_tuple (DLResult, 'bbox_col1', BboxCol1)
    get_dict_tuple (DLResult, 'bbox_row2', BboxRow2)
    get_dict_tuple (DLResult, 'bbox_col2', BboxCol2)
    InstanceType := 'rectangle1'
    
    *1进入,0不进入
    if(1)     
        *whl 添加,乘以系数
        *高度
        BboxRow1:=BboxRow1*imgHeightBeiWidth        
        BboxRow2:=BboxRow2*imgHeightBeiWidth
        *宽度
        BboxCol1:=BboxCol1*imgRate
        BboxCol2:=BboxCol2*imgRate
        
        *whl 添加,重置为1
        imgRate:=1
    endif
    
    
elseif (find(ResultKeys,'bbox_phi') != -1)
    get_dict_tuple (DLResult, 'bbox_row', BboxRow)
    get_dict_tuple (DLResult, 'bbox_col', BboxCol)
    get_dict_tuple (DLResult, 'bbox_length1', BboxLength1)
    get_dict_tuple (DLResult, 'bbox_length2', BboxLength2)
    get_dict_tuple (DLResult, 'bbox_phi', BboxPhi)
    get_dict_tuple (DLResult, 'bbox_class_id', BboxClasses)
    InstanceType := 'rectangle2'
else
    throw ('Result bounding box data could not be found in DLResult.')
endif
if (find(ResultKeys,'mask') != -1)
    get_dict_object (InstanceMask, DLResult, 'mask')
    MaskExists := true
endif
if (InstanceType != 'rectangle1' and InstanceType != 'rectangle2' and not MaskExists)
    throw ('Result bounding box or mask data could not be found in DLSample.')
endif


*whl注释
get_dict_tuple (DLResult, 'bbox_class_id', BboxClasses)

* whl 添加,显示检测对象名称

*whl添加
ShowLabels:=true
ShowDirection:=true
TextColor:='#eeeeee'

TextConf:=''

if (|BboxClasses| > 0)
    * 
    * Get text and text size for correct positioning of result class IDs.
    if (ShowLabels)
        Text := BboxClasses + TextConf
        get_string_extents (CurrentWindowHandle, Text, Ascent, Descent, _, _)
        TextOffset := (Ascent + Descent) / WindowImageRatio
    endif
    * 
    * Generate bounding box XLDs.
    if (InstanceType == 'rectangle1')
        tuple_gen_const (|BboxRow1|, 0.0, BboxPhi)
        
        *画目标框线,乘以 imgRate
        gen_rectangle2_contour_xld (BboxRectangle, 0.5 * (BboxRow1 + BboxRow2), 0.5 * (BboxCol1 + BboxCol2), BboxPhi, 0.5 * (BboxCol2 - BboxCol1), 0.5 * (BboxRow2 - BboxRow1))
       * gen_rectangle2_contour_xld (BboxRectangle, 0.5 * (BboxRow1  + BboxRow2)*imgRate, 0.5 * (BboxCol1 + BboxCol2)*imgRate, BboxPhi, 0.5 * (BboxCol2 - BboxCol1)*imgRate, 0.5 * (BboxRow2 - BboxRow1)*imgRate)
       
        
        if (ShowLabels)
            LabelRowTop := BboxRow1
            LabelRowBottom := BboxRow2 - TextOffset
            LabelCol := BboxCol1
        endif
    elseif (InstanceType == 'rectangle2')
        gen_rectangle2_contour_xld (BboxRectangle, BboxRow, BboxCol, BboxPhi, BboxLength1, BboxLength2)
        if (ShowLabels)
            LabelRowTop := BboxRow - TextOffset
            LabelRowBottom := BboxRow
            LabelCol := BboxCol
        endif
        if (ShowDirection)
            if (ShowDirection == -1)
                ArrowSizeFactorLength := 0.4
                ArrowSizeFactorHead := 0.2
                MaxLengthArrow := 20
                HalfLengthArrow := min2(MaxLengthArrow,BboxLength1 * ArrowSizeFactorLength)
                ArrowBaseRow := BboxRow - (BboxLength1 - HalfLengthArrow) * sin(BboxPhi)
                ArrowBaseCol := BboxCol + (BboxLength1 - HalfLengthArrow) * cos(BboxPhi)
                ArrowHeadRow := BboxRow - (BboxLength1 + HalfLengthArrow) * sin(BboxPhi)
                ArrowHeadCol := BboxCol + (BboxLength1 + HalfLengthArrow) * cos(BboxPhi)
                ArrowHeadSize := min2(MaxLengthArrow,min2(BboxLength1,BboxLength2)) * ArrowSizeFactorHead
            else
                ArrowHeadSize := 20.0
                ArrowBaseRow := BboxRow
                ArrowBaseCol := BboxCol
                ArrowHeadRow := BboxRow - (BboxLength1 + ArrowHeadSize) * sin(BboxPhi)
                ArrowHeadCol := BboxCol + (BboxLength1 + ArrowHeadSize) * cos(BboxPhi)
            endif
            gen_arrow_contour_xld (OrientationArrows, ArrowBaseRow, ArrowBaseCol, ArrowHeadRow, ArrowHeadCol, ArrowHeadSize, ArrowHeadSize)
        endif
    elseif (MaskExists)
        area_center (InstanceMask, _, MaskRow, MaskCol)
        LabelRowTop := MaskRow - TextOffset
        LabelRowBottom := MaskRow
        LabelCol := MaskCol
    else
        throw ('Unknown instance_type: ' + InstanceType)
    endif
    * 
    get_contour_style (CurrentWindowHandle, ContourStyle)
    dev_set_contour_style ('stroke')
    get_line_style (CurrentWindowHandle, Style)
    
    *whl添加
    LineWidthBbox:=1
    
    LineWidths := [LineWidthBbox + 2,LineWidthBbox]
    dev_set_line_width (LineWidthBbox)
    * 
    * Collect ClassIDs of the bounding boxes.
    tuple_gen_const (|BboxClasses|, 0, BboxClassIndices)
    * 
    * Draw bounding boxes.
    for IndexBbox := 0 to |BboxClasses| - 1 by 1
        ClassID := find(ClassIDs,BboxClasses[IndexBbox])
        BboxClassIndices[IndexBbox] := ClassID
        * First draw in black to make the class-color visible.
        CurrentColors := ['black',Colors[ClassID]]
        if (MaskExists)
            select_obj (InstanceMask, MaskSelected, IndexBbox + 1)
            dev_set_draw ('fill')
            dev_set_color (Colors[ClassID] + '80')
            dev_display (MaskSelected)
            dev_set_draw ('margin')
        endif
        for IndexStyle := 0 to |CurrentColors| - 1 by 1
            dev_set_color (CurrentColors[IndexStyle])
            dev_set_line_width (LineWidths[IndexStyle])
            if (InstanceType != '')
                select_obj (BboxRectangle, RectangleSelected, IndexBbox + 1)
                dev_display (RectangleSelected)
                if (InstanceType == 'rectangle2' and ShowDirection)
                    select_obj (OrientationArrows, ArrowSelected, IndexBbox + 1)
                    dev_display (ArrowSelected)
                endif
            endif
        endfor
    endfor
    * 
    * Draw text of bounding boxes.
    if (ShowLabels)
        * For better visibility the text is displayed after all bounding boxes are drawn.
        * Get text and text size for correct positioning of result class IDs.
       * Text := BboxClasses + TextConf
        
        *whl 对象文本
        *bbox_class_name标签,bbox_confidence置信度得分
        whlObjectClassName:=DLResult.bbox_class_name
        *四舍五入,保留10位小数
        tuple_string(DLResult.bbox_confidence, '.10f', StringConfidence)     
        *截取字符串
      tuple_substr (StringConfidence, 0, 3, Substring)
         Text :=whlObjectClassName+ Substring
                
        
        * Select text color.
        if (TextColor == '')
            TextColorClasses := Colors[BboxClassIndices]
        else
            tuple_gen_const (|BboxClassIndices|, TextColor, TextColorClasses)
        endif
        * Select correct position of the text.
        LabelRow := LabelRowTop
       
        *whl注释
*         if (TextPositionRow == 'bottom')
       *     LabelRow := LabelRowBottom
       * endif
         
         *whl添加,标签字体背景色
             BoxLabelColor:='#00000099'  
            * BoxLabelColor:='#05E600'
             
        * Display text.显示对象标签文本         
        dev_disp_text (Text, 'image', LabelRow, LabelCol, TextColorClasses, ['box_color', 'shadow', 'border_radius'], [BoxLabelColor,'false', 0])
    endif
    * 
    dev_set_contour_style (ContourStyle)
    set_line_style (CurrentWindowHandle, Style)
else
    * Do nothing if no results are present.
    BboxClassIndices := []
endif
        *显示目标对象框,识别分类文本,结束
        
   
        *whl 注释,不执行if代码里面的代码
        
    endif
    * 
    KeyIndex := KeyIndex + 1
*endwhile      
    
       
       * whl测试,目标框显示,结束             
        
        
        *whl注释
       * WindowHandles := WindowHandleDict.bbox_result
      * dev_set_window (WindowHandles[0])
       
       
        
       * set_display_font (WindowHandles[0], 16, 'mono', 'true', 'false')
         * whl测试
       * set_display_font (WindowID1, 16, 'mono', 'true', 'false')
        
         *whl注释,不显示绿色的检测文本列表
      *  dev_disp_text (Text, 'window', 'top', 'left', TextColor, ['box_color', 'shadow'], [TextBoxColor,'false'])
       
       set_display_font (WindowID1, 16, 'mono', 'true', 'false')  
     * dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
        
      
      * 拆分字符串,图片路径     
  tuple_split(Batch,'\\',fileWordArr)
   Wordlength:=|fileWordArr|
  *取最后一个字符串
   fileShortName:=fileWordArr[Wordlength-1]
  
   *显示文件名
     dev_disp_text (fileShortName, 'window', 'bottom', 'left', 'magenta', [], [])

     *将窗口保存为本地图片文件
    * dump_window(WindowID1,'png','G:/机器视觉_测试项目/家具目标检测/videoImages/2')
     
     
        
        stop ()
    endfor
endfor
* 
* Close windows used for visualization.关闭用于可视化的窗口
*dev_close_window_dict (WindowHandleDict)
* 
* 
set_display_font (WindowID1, 24, 'mono', 'true', 'false')       
 dev_disp_text ('程序结束', 'window', 'bottom', 'right', 'green', ['box_color'], [ 'blue'])
 
 
 
 

本地函数 get_distinct_colors()

* 
* We get distinct color-values first in HLS color-space.
* Assumes hue [0, EndColor), lightness [0, 1), saturation [0, 1).
* 
* Parameter checks.
* NumColors.
if (NumColors < 1)
    throw ('NumColors should be at least 1')
endif
if (not is_int(NumColors))
    throw ('NumColors should be of type int')
endif
if (|NumColors| != 1)
    throw ('NumColors should have length 1')
endif
* Random.
if (Random != 0 and Random != 1)
    tuple_is_string (Random, IsString)
    if (IsString)
        Random := Random == 'true' or 'false'
    else
        throw ('Random should be either true or false')
    endif
endif
* StartColor.
if (|StartColor| != 1)
    throw ('StartColor should have length 1')
endif
if (StartColor < 0 or StartColor > 255)
    throw ('StartColor should be in the range [0, 255]')
endif
if (not is_int(StartColor))
    throw ('StartColor should be of type int')
endif
* EndColor.
if (|EndColor| != 1)
    throw ('EndColor should have length 1')
endif
if (EndColor < 0 or EndColor > 255)
    throw ('EndColor should be in the range [0, 255]')
endif
if (not is_int(EndColor))
    throw ('EndColor should be of type int')
endif
* 
* Color generation.
if (StartColor > EndColor)
    EndColor := EndColor + 255
endif
if (NumColors != 1)
    Hue := (StartColor + int((EndColor - StartColor) * real([0:NumColors - 1]) / real(NumColors - 1))) % 255
else
    Hue := mean([StartColor,EndColor])
endif
if (Random)
    Hue := Hue[sort_index(rand(NumColors))]
    Lightness := int((5.0 + rand(NumColors)) * 255.0 / 10.0)
    Saturation := int((9.0 + rand(NumColors)) * 255.0 / 10.0)
else
    Lightness := int(gen_tuple_const(NumColors,0.55) * 255.0)
    Saturation := int(gen_tuple_const(NumColors,0.95) * 255.0)
endif
* 
* Write colors to a 3-channel image in order to transform easier.
gen_image_const (HLSImageH, 'byte', 1, NumColors)
gen_image_const (HLSImageL, 'byte', 1, NumColors)
gen_image_const (HLSImageS, 'byte', 1, NumColors)
get_region_points (HLSImageH, Rows, Columns)
set_grayval (HLSImageH, Rows, Columns, Hue)
set_grayval (HLSImageL, Rows, Columns, Lightness)
set_grayval (HLSImageS, Rows, Columns, Saturation)
* 
* Convert from HLS to RGB.
trans_to_rgb (HLSImageH, HLSImageL, HLSImageS, ImageR, ImageG, ImageB, 'hls')
* 
* Get RGB-values and transform to Hex.
get_grayval (ImageR, Rows, Columns, Red)
get_grayval (ImageG, Rows, Columns, Green)
get_grayval (ImageB, Rows, Columns, Blue)
Colors := '#' + Red$'02x' + Green$'02x' + Blue$'02x'
return ()
* 

本地函数 make_neighboring_colors_distinguishable()

* 
* Shuffle the input colors in a deterministic way
* to make adjacent colors more distinguishable.
* Neighboring colors from the input are distributed to every NumChunks
* position in the output.
* Depending on the number of colors, increase NumChunks.
NumColors := |ColorsRainbow|
if (NumColors >= 8)
    NumChunks := 3
    if (NumColors >= 40)
        NumChunks := 6
    elseif (NumColors >= 20)
        NumChunks := 4
    endif
    Colors := gen_tuple_const(NumColors,-1)
    * Check if the Number of Colors is dividable by NumChunks.
    NumLeftOver := NumColors % NumChunks
    ColorsPerChunk := int(NumColors / NumChunks)
    StartIdx := 0
    for S := 0 to NumChunks - 1 by 1
        EndIdx := StartIdx + ColorsPerChunk - 1
        if (S < NumLeftOver)
            EndIdx := EndIdx + 1
        endif
        IdxsLeft := [S:NumChunks:NumColors - 1]
        IdxsRight := [StartIdx:EndIdx]
        Colors[S:NumChunks:NumColors - 1] := ColorsRainbow[StartIdx:EndIdx]
        StartIdx := EndIdx + 1
    endfor
else
    Colors := ColorsRainbow
endif
return ()

相关文章:

  • 自学FOC系列分享--SVPWM和clark 逆变换及代码实战
  • docker从容器中cp到本地、cp本地到容器
  • LabVIEW开发中的电机控制与相机像素差
  • Visual Studio中打开多个项目
  • 【微中子代理踩坑-前端node-sass安装失败】
  • 敏捷开发07:敏捷项目可视化管理-ScrumBoard(Scrum板)使用介绍
  • rust 实例化动态对象
  • IC卡、M1卡及各类卡的原理使用说明
  • 以太网的MAC(介质访问控制)详解
  • 前端知识点---vue的声明周期(vue)
  • RAGFLOW使用flask转发的open ai接口
  • C# 十六进制字符串转换为十进制
  • Error [ERR_REQUIRE_ESM]: require() of ES Module
  • 深入了解 DevOps 基础架构:可追溯性的关键作用
  • 深入理解 C++17 中的 std::atomic<T>::is_always_lock_free
  • 全面了解 Stanford NLP:强大自然语言处理工具的使用与案例
  • 在mfc中使用自定义三维向量类和计算多个三维向量的平均值
  • Alluxio Enterprise AI 3.5 发布,全面提升AI模型训练性能
  • UE 学习记录
  • 2025-02-20 学习记录--C/C++-PTA 7-27 冒泡法排序
  • 龚正会见巴基斯坦卡拉奇市市长穆尔塔扎·瓦哈卜、巴西圣保罗市市长里卡多·努内斯
  • 美施压拉美国家选边站队,外交部:搞阵营对抗注定失败
  • 讲座预告|大国博弈与创新破局:如何激励中国企业创新
  • 广东省发展改革委原副主任、省能源局原局长吴道闻被开除公职
  • 王毅同伊朗外长阿拉格齐会谈
  • 上金所:调整黄金、白银延期部分合约保证金水平和涨跌停板