C++学习之路,从0到精通的征途:vector类的模拟实现
目录
一.vector的介绍
二.vector的接口实现
1.成员变量
2.迭代器
(1)begin
(2)end
3.容量操作
(1)size,capacity
(2)reserve
(3)resize
4.修改
(1)push_back
(2)pop_back
(3)insert
(4)erase
(5)swap
5.默认成员函数
(1)构造函数
(2)拷贝构造函数
(3)析构函数
(4)赋值重载
三.代码总览
vector.h
test.cpp
一.vector的介绍
源文档
二.vector的接口实现
1.成员变量
vector可以通过类模板来存储不同数据类型的元素,并且由于其存储空间连续,与string相同,其迭代器为空间中该数据类型的指针,
template<class T>
class vector
{
public:typedef T* iterator;typedef const T* const_iterator;private:iterator _start = nullptr; // 指向空间中第一个有效数据iterator _finish = nullptr; // 指向空间中最后一个有效数据的下一个位置iterator _end_of_storage = nullptr; // 指向存储空间尾部
};
2.迭代器
(1)begin
iterator begin()
{return _start;
}
const_iterator begin() const
{return _start;
}
(2)end
iterator end()
{return _finish;
}
const_iterator end() const
{return _finish;
}
3.容量操作
(1)size,capacity
size_t size() const
{return _finish - _start;
}
size_t capacity() const
{return _end_of_storage - _start;
}
(2)reserve
void reserve(size_t n)
{if (n > capacity()){// 异地扩容,复制数据,并释放旧空间size_t old_size = size();T* tmp = new T[n];if (_start){for (int i = 0; i < old_size; i++){tmp[i] = _start[i];}delete[] _start;}// 更新成员变量_start = tmp;_finish = tmp + old_size;_end_of_storage = _start + n;}
}
当n大于当前容量,则进行扩容操作,当n小于当前容量,不做处理。
(3)resize
// 由于val的数据类型由模板T决定,val的缺省值采用匿名对象
void resize(size_t n, T val = T())
C++中新增了内置类型的构造函数,在声明内置类型变量时,可以进行如下操作:
可以看到内置类型也可以调用其构造,int类型被初始化为0,double类型被初始化为0.0,char类型被初始化为'\0'。
void resize(size_t n, T val = T())
{if (n > size()){// 扩容reserve(n);// 插入数据while (_finish != _start + n){*_finish = val;++_finish;}//for (int i = size(); i < n; i++)//{// _start[i] = val;//}// 更新_finish_finish = _start + n;}else{// 删除数据_finish = _start + n;}
}
当n大于有效数据个数时,扩容并插入数据,当n小于有效数据个数时,直接调整_finish指向的位置,达到删除数据的操作。
4.修改
(1)push_back
void push_back(const T& x)
{// 容量不够,进行扩容if (_finish == _end_of_storage){size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();reserve(newcapacity);}*_finish = x;++_finish;
}
(2)pop_back
void pop_back()
{assert(size() > 0);--_finish;
}
(3)insert
vector的insert操作需要考虑在进行异地扩容时,迭代器失效的问题:
所以我们需要在扩容时算出pos相对于当前_start的距离,在扩容后更新pos的位置,使其指向扩容后的空间。
void insert(iterator pos, const T& x)
{assert(pos >= _start && pos <= _finish);if (_finish == _end_of_storage){// 算出pos对_start的相对位置size_t len = pos - _start;size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();reserve(newcapacity);// 更新pos,指向新空间pos = _start + len;}// 使pos及pos后的元素向后移动一位,插入数据iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;--end;}*pos = x;++_finish;
}
(4)erase
vector的erase操作并没有扩容问题,但由于erase后pos之后的元素会向前移动一位,造成pos指向的位置不明确,如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,从而也会导致迭代器失效:
所以erase需要返回一个指向删除元素的下一个元素的迭代器,才能实现连续删除:
iterator erase(iterator pos)
{assert(pos >= _start && pos < _finish);iterator end = pos + 1;// 删除元素while (end < _finish){*(end - 1) = *end;++end;}--_finish;// 返回删除元素的下一个元素的迭代器return pos;
}
(5)swap
void swap(vector<T>& v)
{std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);
}
5.默认成员函数
(1)构造函数
// 成员变量走初始化列表,采用缺省值
vector()
{}// n个元素初始化
vector(int n, const T& val = T())
{reserve(n);for (int i = 0; i < n; i++){push_back(val);}
}vector(size_t n, const T& val = T())
{reserve(n);for (size_t i = 0; i < n; i++){push_back(val);}
}// 用迭代器初始化
template <class InputIterator>
vector(InputIterator first, InputIterator last)
{while (first != last){push_back(*first);++first;}
}// initializer_list有自己的迭代器,直接扩容,尾插数据即可
vector(std::initializer_list<T> il)
{reserve(il.size());for (auto& e : il){push_back(e);}
}
(2)拷贝构造函数
vector(const vector<T>& v)
{reserve(v.capacity());for (auto& e : v){push_back(e);}
}
先进行同等大小空间的扩容,遍历被拷贝的链表,再逐个元素遍历尾插即可。
(3)析构函数
~vector()
{if (_start){delete[] _start;_start = _finish = _end_of_storage = nullptr;}
}
(4)赋值重载
vector<T>& operator=(vector<T> v)
{swap(v);return *this;
}
三.代码总览
vector.h
#pragma once
#include<iostream>
#include<assert.h>
#include<initializer_list>
#include<algorithm>namespace my_vector
{template<class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin() const{return _start;}const_iterator end() const{return _finish;}size_t size() const{return _finish - _start;}size_t capacity() const{return _end_of_storage - _start;}// 成员变量走初始化列表,采用缺省值vector(){}vector(int n, const T& val = T()){reserve(n);for (int i = 0; i < n; i++){push_back(val);}}vector(size_t n, const T& val = T()){reserve(n);for (size_t i = 0; i < n; i++){push_back(val);}}// 用迭代器初始化template <class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}// initializer_list有自己的迭代器,直接扩容,尾插数据即可vector(std::initializer_list<T> il){reserve(il.size());for (auto& e : il){push_back(e);}}// v2(v1)vector(const vector<T>& v){reserve(v.capacity());for (auto& e : v){push_back(e);}}void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}// v2 = v1vector<T>& operator=(vector<T> v){swap(v);return *this;}~vector(){if (_start){delete[] _start;_start = _finish = _end_of_storage = nullptr;}}// 由于val的数据类型由模板T决定,val的缺省值采用匿名对象void resize(size_t n, T val = T()){if (n > size()){// 扩容reserve(n);// 插入数据while (_finish != _start + n){*_finish = val;++_finish;}//for (int i = size(); i < n; i++)//{// _start[i] = val;//}// 更新_finish_finish = _start + n;}else{// 删除数据_finish = _start + n;}}void reserve(size_t n){if (n > capacity()){// 异地扩容,复制数据,并释放旧空间size_t old_size = size();T* tmp = new T[n];if (_start){for (int i = 0; i < old_size; i++){tmp[i] = _start[i];}delete[] _start;}// 更新成员变量_start = tmp;_finish = tmp + old_size;_end_of_storage = _start + n;}}void push_back(const T& x){// 容量不够,进行扩容if (_finish == _end_of_storage){size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();reserve(newcapacity);}*_finish = x;++_finish;}void pop_back(){assert(size() > 0);--_finish;}void insert(iterator pos, const T& x){assert(pos >= _start && pos <= _finish);if (_finish == _end_of_storage){// 算出pos对_start的相对位置size_t len = pos - _start;size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();reserve(newcapacity);// 更新pos,指向新空间pos = _start + len;}// 使pos后的元素向后移动,插入数据iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;--end;}*pos = x;++_finish;}iterator erase(iterator pos){assert(pos >= _start && pos < _finish);iterator end = pos + 1;// 删除元素while (end < _finish){*(end - 1) = *end;++end;}--_finish;// 返回删除元素的下一个元素的迭代器return pos;}private:iterator _start = nullptr;iterator _finish = nullptr;iterator _end_of_storage = nullptr;};
}
test.cpp
#include<vector>
#include"vector.h"
using namespace std;namespace my_vector
{void test_vector1(){vector<int> v1;v1.push_back(1);v1.push_back(2);v1.push_back(3);v1.push_back(4);v1.push_back(5);v1.push_back(6);vector<int> v2(3, 5);vector<int> v3 = {1, 2, 3};for (auto& e : v3){std::cout << e << ' ';}v2 = v3;for (auto& e : v2){std::cout << e << ' ';}std::cout << std::endl;for (auto& e : v3){std::cout << e << ' ';}}void test_vector2(){//vector<int> v = { 1 };//v.pop_back();//v.pop_back();vector<int> v = { 1,2,3,4,5,6 };v.resize(7, 0);for (auto& e : v){std::cout << e << ' ';}std::cout << std::endl;v.resize(3);for (auto& e : v){std::cout << e << ' ';}}void test_vector3(){vector<int> v = { 1,2,3,4,4,6 };v.insert(v.begin() + v.size(), 5);for (auto& e : v){cout << e << ' ';}cout << endl;vector<int> v1 = { 1 };v1.erase(v1.begin());for (auto& e : v1){cout << e << ' ';}cout << endl;vector<string> v2 = { "11111111111111","11111111111111", "11111111111111" };for (auto& e : v2){cout << e << ' ';}}
}int main()
{//my_vector::test_vector3();int a = int();double b = double();char c = char(); // '\0'return 0;
}