当前位置: 首页 > news >正文

rk3588上完成halcon的形状模型配准以及和opencv的图像转换

一、准备工作

1)安装好halcon,确保halcon的c++的调用是正常的

2)编译好opencv

上面的两个步骤,均可以参考我的两个博文完成:

Halcon在linux及ARM上的安装及c++工程化_halcon linux-CSDN博客

RK3588上编译opencv 及基于c++实现图像的读入-CSDN博客 

二、代码准备

2.1 基于c++的opencv和halcon之间的图像的转换代码

// 将halcon图像转换为opencv的图像
Mat HImageToMat(HObject &imgHalcon)
{HTuple channels;HString cType;cv::Mat Image;ConvertImageType(imgHalcon, &imgHalcon, "byte");CountChannels(imgHalcon, &channels);Hlong width = 0;Hlong height = 0;if (channels[0].I() == 1){HImage hImg(imgHalcon);void *ptr = hImg.GetImagePointer1(&cType, &width, &height);//GetImagePointer1(Hobj, &ptr, &cType, &wid, &hgt);int W = width;int H = height;Image.create(H, W, CV_8UC1);unsigned char *pdata = static_cast<unsigned char *>(ptr);memcpy(Image.data, pdata, W*H);}else if (channels[0].I() == 3){void *Rptr;void *Gptr;void *Bptr;HImage hImg(imgHalcon);hImg.GetImagePointer3(&Rptr, &Gptr, &Bptr, &cType, &width, &height);int W = width;int H = height;Image.create(H, W, CV_8UC3);vector<cv::Mat> VecM(3);VecM[0].create(H, W, CV_8UC1);VecM[1].create(H, W, CV_8UC1);VecM[2].create(H, W, CV_8UC1);unsigned char *R = (unsigned char *)Rptr;unsigned char *G = (unsigned char *)Gptr;unsigned char *B = (unsigned char *)Bptr;memcpy(VecM[2].data, R, W*H);memcpy(VecM[1].data, G, W*H);memcpy(VecM[0].data, B, W*H);cv::merge(VecM, Image);}return Image;
}//OpenCV Mat -> Halcon HObject​
HObject MatToHImage(Mat &imgMat)
{HObject Hobj = HObject();int height = imgMat.rows;int width = imgMat.cols;int i;//  CV_8UC3if (imgMat.type() == CV_8UC3){vector<cv::Mat> imgchannel;split(imgMat, imgchannel);cv::Mat imgB = imgchannel[0];cv::Mat imgG = imgchannel[1];cv::Mat imgR = imgchannel[2];uchar* dataR = new uchar[height * width];uchar* dataG = new uchar[height * width];uchar* dataB = new uchar[height * width];for (i = 0; i<height; i++){memcpy(dataR + width*i, imgR.data + imgR.step*i, width);memcpy(dataG + width*i, imgG.data + imgG.step*i, width);memcpy(dataB + width*i, imgB.data + imgB.step*i, width);}GenImage3(&Hobj, "byte", width, height, (Hlong)dataR, (Hlong)dataG, (Hlong)dataB);delete[]dataR;delete[]dataG;delete[]dataB;}//  CV_8UCU1else if (imgMat.type() == CV_8UC1){uchar* data = new uchar[height*width];for (i = 0; i<height; i++)memcpy(data + width*i, imgMat.data + imgMat.step*i, width);GenImage1(&Hobj, "byte", width, height, (Hlong)data);delete[] data;}return Hobj;
}

2.2 创建一个总执行的cpp

HalconDemo.cpp

#include <iostream>#include <halconcpp/HalconCpp.h>
#include <opencv2/opencv.hpp>using namespace HalconCpp;
using namespace std;
using namespace cv;// 将halcon图像转换为opencv的图像
Mat HImageToMat(HObject &imgHalcon)
{HTuple channels;HString cType;cv::Mat Image;ConvertImageType(imgHalcon, &imgHalcon, "byte");CountChannels(imgHalcon, &channels);Hlong width = 0;Hlong height = 0;if (channels[0].I() == 1){HImage hImg(imgHalcon);void *ptr = hImg.GetImagePointer1(&cType, &width, &height);//GetImagePointer1(Hobj, &ptr, &cType, &wid, &hgt);int W = width;int H = height;Image.create(H, W, CV_8UC1);unsigned char *pdata = static_cast<unsigned char *>(ptr);memcpy(Image.data, pdata, W*H);}else if (channels[0].I() == 3){void *Rptr;void *Gptr;void *Bptr;HImage hImg(imgHalcon);hImg.GetImagePointer3(&Rptr, &Gptr, &Bptr, &cType, &width, &height);int W = width;int H = height;Image.create(H, W, CV_8UC3);vector<cv::Mat> VecM(3);VecM[0].create(H, W, CV_8UC1);VecM[1].create(H, W, CV_8UC1);VecM[2].create(H, W, CV_8UC1);unsigned char *R = (unsigned char *)Rptr;unsigned char *G = (unsigned char *)Gptr;unsigned char *B = (unsigned char *)Bptr;memcpy(VecM[2].data, R, W*H);memcpy(VecM[1].data, G, W*H);memcpy(VecM[0].data, B, W*H);cv::merge(VecM, Image);}return Image;
}//OpenCV Mat -> Halcon HObject​
HObject MatToHImage(Mat &imgMat)
{HObject Hobj = HObject();int height = imgMat.rows;int width = imgMat.cols;int i;//  CV_8UC3if (imgMat.type() == CV_8UC3){vector<cv::Mat> imgchannel;split(imgMat, imgchannel);cv::Mat imgB = imgchannel[0];cv::Mat imgG = imgchannel[1];cv::Mat imgR = imgchannel[2];uchar* dataR = new uchar[height * width];uchar* dataG = new uchar[height * width];uchar* dataB = new uchar[height * width];for (i = 0; i<height; i++){memcpy(dataR + width*i, imgR.data + imgR.step*i, width);memcpy(dataG + width*i, imgG.data + imgG.step*i, width);memcpy(dataB + width*i, imgB.data + imgB.step*i, width);}GenImage3(&Hobj, "byte", width, height, (Hlong)dataR, (Hlong)dataG, (Hlong)dataB);delete[]dataR;delete[]dataG;delete[]dataB;}//  CV_8UCU1else if (imgMat.type() == CV_8UC1){uchar* data = new uchar[height*width];for (i = 0; i<height; i++)memcpy(data + width*i, imgMat.data + imgMat.step*i, width);GenImage1(&Hobj, "byte", width, height, (Hlong)data);delete[] data;}return Hobj;
}Mat shape_find(cv::Mat image_opencv)
{// Local iconic variablesHObject  ho_Image800, ho_ROI_0, ho_ImageReduced;HObject  ho_ImagePart, ho_ImageReduced1, ho_Imagetest, ho_rImage;HObject  ho_ImageAffineTrans, ho_SymbolXLDs;// Local control variablesHTuple  hv_Area, hv_RowModel, hv_ColumnModel;HTuple  hv_ModelID1, hv_StartSeconds, hv_Row, hv_Column;HTuple  hv_Angle, hv_Scale1, hv_Score1, hv_model, hv_EndSeconds;HTuple  hv_HomMat2DImage, hv_DataCodeHandle, hv_ResultHandles;HTuple  hv_DecodedDataStrings;cv::Mat image;//加上这句就可以了,因为画的模板框在旋转到右边和左边时超出了图像范围,要允许与边缘相交才能找到SetSystem("border_shape_models", "true");SetSystem("int_zooming", "true");//ReadImage(&ho_Image800, "../images/8.bmp");ho_Image800=MatToHImage(image_opencv);GenRectangle1(&ho_ROI_0, 2.06, 286.751, 1778.7, 2959.32);ReduceDomain(ho_Image800, ho_ROI_0, &ho_ImageReduced);CropDomain(ho_ImageReduced, &ho_ImagePart);GenRectangle1(&ho_ROI_0, 763.171, 559.159, 1444.96, 2025.97);ReduceDomain(ho_ImagePart, ho_ROI_0, &ho_ImageReduced1);AreaCenter(ho_ROI_0, &hv_Area, &hv_RowModel, &hv_ColumnModel);CreateScaledShapeModel(ho_ImageReduced1, "auto", HTuple(0).TupleRad(), HTuple(360).TupleRad(), HTuple(0.2).TupleRad(), 0.5, 2, "auto", "auto", "use_polarity", 40, 30, &hv_ModelID1);ReadImage(&ho_Imagetest, "../images/9.bmp");GenRectangle1(&ho_ROI_0, 2.06, 286.751, 1778.7, 2959.32);ReduceDomain(ho_Imagetest, ho_ROI_0, &ho_ImageReduced);CropDomain(ho_ImageReduced, &ho_rImage);CountSeconds(&hv_StartSeconds);FindScaledShapeModels(ho_rImage, hv_ModelID1, HTuple(0).TupleRad(), HTuple(360).TupleRad(), 0.5, 2, 0.4, 1, 1, "least_squares_high", (HTuple(5).Append(3)), 0.9, &hv_Row, &hv_Column, &hv_Angle, &hv_Scale1, &hv_Score1, &hv_model);CountSeconds(&hv_EndSeconds);if (0 != (int((hv_Row.TupleLength())>0))){std::cout << "find shape is ok " << endl;VectorAngleToRigid(HTuple(hv_Row[0]), HTuple(hv_Column[0]), hv_Angle, HTuple(hv_RowModel[0]), HTuple(hv_ColumnModel[0]), 0, &hv_HomMat2DImage);AffineTransImage(ho_rImage, &ho_ImageAffineTrans, hv_HomMat2DImage, "constant", "false");CreateDataCode2dModel("QR Code", HTuple(), HTuple(), &hv_DataCodeHandle);FindDataCode2d(ho_ImageAffineTrans, &ho_SymbolXLDs, hv_DataCodeHandle, HTuple(), HTuple(), &hv_ResultHandles, &hv_DecodedDataStrings);std::cout << "QR Code" << ":" << hv_DecodedDataStrings.S() << endl;image=HImageToMat(ho_ImageAffineTrans);}return image;
}int main()
{Mat image;Mat image_opencv = imread("../9.bmp");if (image_opencv.empty()) {std::cerr << "Error opening image!" << std::endl;return -1;}image=shape_find(image_opencv);cout<<"hello";std::string outputPath = "result.bmp"; imwrite(outputPath,image);return 0;
}

2.3 CMakeLists.txt

cmake_minimum_required(VERSION 3.0.0)
project(HalconDemo VERSION 0.1.0)set(TARGET_NAME HalconDemo)set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED True)
set(CMAKE_CXX_EXTENSIONS OFF)set(OpenCV_DIR "/usr/local/opencv470")  # 根据实际安装路径修改
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})# 添加头文件搜索路径  
include_directories(include)link_directories(/opt/halcon/lib/aarch64-linux)aux_source_directory(. SRCS )set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}  -static-libstdc++ -fPIC -Wl,--copy-dt-needed-entries -Wno-error=deprecated-declarations -Wno-deprecated-declarations ")# 寻找./src下面所有.cpp为后缀的源文件,并且保存到SRC变量里面  
file(GLOB_RECURSE SRC ./src/*.cpp)  # 编译SRC变量存储的源文件,编译生成目标文件命名为hello  
add_executable(hello ${SRC})
#add_library(hello SHARED src/HalconDemo.cpp)
target_link_libraries(hello halcon halconcpp hdevenginecpp)
target_link_libraries(hello ${OpenCV_LIBS}) 

2.4 编译及运行

mkdir build

cd build

cmake ..

make

./hello

相关文章:

  • 算法 | 成长优化算法(Growth Optimizer,GO)原理,公式,应用,算法改进研究综述,matlab代码
  • 【MySQL】MySQL中的数据类型详解
  • 【前端】【面试】【业务场景】前端如何获取并生成设备唯一标识
  • 使用pyinstaller打包fastapi项目的问题记录
  • 01-初识前端
  • 级联vs端到端、全双工、轮次检测、方言语种、商业模式…语音 AI 开发者都在关心什么?丨Voice Agent 学习笔记
  • 深度学习3.5 图像分类数据集
  • 每日算法-250421
  • Java 并发包核心机制深度解析:锁的公平性、异步调度、AQS 原理全解
  • 【MySQL】:数据库事务管理
  • JavaEE--2.多线程
  • 把dll模块注入到游戏进程的方法_基于文件修改的注入方式
  • MCP:AI时代的“万能插座”,开启大模型无限可能
  • SvelteKit 最新中文文档教程(22)—— 最佳实践之无障碍与 SEO
  • 进程与线程:02 多进程图像
  • 在统信UOS 1060上实现自动关机
  • 高防IP能抵御哪些类型的网络攻击?
  • Buildroot、BusyBox与Yocto:嵌入式系统构建工具对比与实战指南
  • 辛格迪客户案例 | 苏州富士莱医药GMP培训管理(TMS)项目
  • 深度学习3.3 线性回归的简洁实现
  • 广州一男子早高峰爬上猎德大桥顶部疑似要跳桥,路段一度拥堵
  • 人民热评:大尺度色情语聊、撮合卖淫,社交APP岂止跑偏
  • 著名世界语教育家、翻译家魏以达逝世
  • 电子产品已拆封,还能申请“七天无理由退货”吗?上海法院这样判
  • 《蛮好的人生》上海特色鲜明,聚焦荧屏甚少出现的保险业
  • 廊坊市长:健全依法决策和决策纠错机制,把群众满意作为工作准绳