当前位置: 首页 > news >正文

【Pandas】pandas DataFrame rmul

Pandas2.2 DataFrame

Binary operator functions

方法描述
DataFrame.add(other)用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作
DataFrame.add(other[, axis, level, fill_value])用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作
DataFrame.sub(other[, axis, level, fill_value])用于执行逐元素的减法操作
DataFrame.mul(other[, axis, level, fill_value])用于执行逐元素的乘法操作
DataFrame.div(other[, axis, level, fill_value])用于执行逐元素的除法操作
DataFrame.truediv(other[, axis, level, …])用于执行逐元素的真除法操作
DataFrame.floordiv(other[, axis, level, …])用于执行逐元素的地板除法操作
DataFrame.mod(other[, axis, level, fill_value])用于执行逐元素的取模操作
DataFrame.pow(other[, axis, level, fill_value])用于对 DataFrame 中的元素进行幂运算
DataFrame.dot(other)用于计算两个 DataFrame(或 DataFrame 与 Series/数组)之间的**矩阵点积(矩阵乘法)**的方法
DataFrame.radd(other[, axis, level, fill_value])用于执行反向加法运算
DataFrame.rsub(other[, axis, level, fill_value])用于执行反向减法运算
DataFrame.rmul(other[, axis, level, fill_value])用于执行反向乘法运算

pandas.DataFrame.rmul()

pandas.DataFrame.rmul 方法用于执行反向乘法运算。具体来说,它相当于调用 other * self,其中 self 是调用该方法的 DataFrame。以下是该方法的参数说明及其功能:

参数说明
  • other: 用于进行乘法运算的值,可以是标量、序列、DataFrame 或字典。
  • axis: 指定沿哪个轴进行运算。0'index' 表示沿行进行运算,1'columns' 表示沿列进行运算。默认为 1
  • level: 如果 other 是一个 MultiIndex,则指定沿哪个级别进行运算。默认为 None
  • fill_value: 用于填充缺失值的值。默认为 None
示例及结果
示例 1: 使用标量进行反向乘法运算
import pandas as pddf = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})print("原始 DataFrame:")
print(df)result = df.rmul(2)
print("\n反向乘法后的 DataFrame (使用 rmul 并指定标量 2):")
print(result)

结果:

原始 DataFrame:A  B  C
0  1  4  7
1  2  5  8
2  3  6  9反向乘法后的 DataFrame (使用 rmul 并指定标量 2):A   B   C
0   2   8  14
1   4  10  16
2   6  12  18
示例 2: 使用序列进行反向乘法运算
import pandas as pddf = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})other = pd.Series([2, 3, 4])print("原始 DataFrame:")
print(df)result = df.rmul(other, axis=0)
print("\n反向乘法后的 DataFrame (使用 rmul 并指定序列):")
print(result)

结果:

原始 DataFrame:A  B  C
0  1  4  7
1  2  5  8
2  3  6  9反向乘法后的 DataFrame (使用 rmul 并指定序列):A   B   C
0   2  12  28
1   6  15  24
2  12  18  36
示例 3: 使用 DataFrame 进行反向乘法运算
import pandas as pddf = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})other_df = pd.DataFrame({'A': [2, 3, 4],'B': [3, 4, 5],'C': [4, 5, 6]
})print("原始 DataFrame:")
print(df)result = df.rmul(other_df)
print("\n反向乘法后的 DataFrame (使用 rmul 并指定 DataFrame):")
print(result)

结果:

原始 DataFrame:A  B  C
0  1  4  7
1  2  5  8
2  3  6  9反向乘法后的 DataFrame (使用 rmul 并指定 DataFrame):A   B   C
0   2  12  28
1   6  20  40
2  12  30  54
示例 4: 使用字典进行反向乘法运算
import pandas as pddf = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})other_dict = {'A': 2, 'B': 3, 'C': 4}print("原始 DataFrame:")
print(df)result = df.rmul(other_dict)
print("\n反向乘法后的 DataFrame (使用 rmul 并指定字典):")
print(result)

结果:

原始 DataFrame:A  B  C
0  1  4  7
1  2  5  8
2  3  6  9反向乘法后的 DataFrame (使用 rmul 并指定字典):A   B   C
0   2  12  28
1   4  15  32
2   6  18  36
解释
  1. 使用标量进行反向乘法运算:

    • df.rmul(2) 计算 DataFrame df 中的每个元素与标量 2 的乘法。
    • 结果是一个新的 DataFrame,其中每个元素是 2 乘以 df 中的元素。
  2. 使用序列进行反向乘法运算:

    • df.rmul(other, axis=0) 计算 DataFrame df 的每一行与序列 other 的对应元素的乘法。
    • 结果是一个新的 DataFrame,其中每个元素是 other 的对应元素乘以 df 的元素。
  3. 使用 DataFrame 进行反向乘法运算:

    • df.rmul(other_df) 计算 DataFrame dfother_df 的对应元素的乘法。
    • 结果是一个新的 DataFrame,其中每个元素是 other_df 的元素乘以 df 的元素。
  4. 使用字典进行反向乘法运算:

    • df.rmul(other_dict) 计算 DataFrame df 的每一列与字典 other_dict 中对应键的值的乘法。
    • 结果是一个新的 DataFrame,其中每个元素是字典 other_dict 中的值乘以 df 的元素。

这些示例展示了 DataFrame.rmul 方法的不同用法及其效果。根据具体需求,可以选择合适的参数来进行反向乘法运算。

相关文章:

  • IP数据报发送和转发的过程
  • c语言知识整理
  • LLaMa Factory大模型微调
  • 机器学习——朴素贝叶斯法运用
  • 小白如何学会完整挪用Github项目?(以pix2pix为例)
  • Android Compose 框架矢量图标深入剖析(七)
  • compose 二维码扫描qrcode
  • Swift与iOS内存管理机制深度剖析
  • 【随笔】地理探测器原理与运用
  • 剑指offer经典题目(六)
  • OTA和IAP的关系
  • TI---UART通信
  • 10:00面试,10:08就出来了,面试问的问题太。。。
  • 240426 leetcode exercises
  • 启动你的RocketMQ之旅(六)-Broker详细——主从复制
  • 如何在 PowerShell 脚本中调用外部 Windows 命令
  • TypeScript基础数据类型详解
  • [论文解析]Mip-Splatting: Alias-free 3D Gaussian Splatting
  • 【Java面试笔记:进阶】22.AtomicInteger底层实现原理是什么?如何在自己的产品代码中应用CAS操作?
  • 自然语言处理——语言转换
  • 高璞任中国一汽党委常委、副总经理
  • 出国留学、来华留学呈现双增新趋势,“00后留学生个性鲜明”
  • 美联储官员:货币政策不会立即改变,金融市场波动或致美国经济增长承压
  • 传媒湃︱《金陵晚报》副刊“雨花石”5月起改为免费刊登
  • 三部门提出17条举措,全力促进高校毕业生等青年就业创业
  • 乐聚创始人:人形机器人当前要考虑泡沫问题,年底或将进入冷静期